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Definition. The neural networks N we consider are
weighted, fully-connected, feed-forward nets with binary
activation functions. The net's states (activation pat-
terns) are just given by sets of nodes.

Definition. The forward-propagation Prop(S) gives
the set of nodes that are eventually activated by S.

Key Idea: Neural networks are not merely black boxes!
Prop(S) contains information about conditional beliefs:

Let's say A) B holds iff Prop(JAK)� JBK; in other
words, the net classifies A as B. (Leitgeb 2018) shows
that we can build a neural network (with states) satis-
fying a set of conditional constraints ¡.

Example. Let ¡ = {penguins ! bird; bird ) flies;
:(penguins ) flies)}. Here's how we might build N:

Syntax. We consider the language:

A;B 2 p j :A j A^B j KA j TA

We define the duals hKi; hTi as usual. We can express
A)B as TA!B (�the typical A is B�).

Semantics. We map each formula to a state:

JpK=V (p) J:AK= JAK{ JA^BK= JAK\ JBK
JhKiAK = {n j n is graph-reachable from A}
JhTiAK = Prop(JAK)

Definition. N;w �A iff w 2 JAK

Neural Network Semantics

These semantics don't account for learning! e.g., Con-
sider iterated Hebbian learning, which says

Neurons that fire together wire together ;
Repeat until we reach a fixed point.

Definition. Hebb�(N ; JSK) gives the resulting
net obtained by increasing the weights of N within
Prop(JSK) until they are �maximally high.�

Example. Say the neural network we built before
repeatedly observes puffins (shown in the above pic-
ture). Puffins share enough features with penguins that
the net eventually believes that penguins fly.

Learning wrecks the model! How can we track the pre-
cise way in which the network model changes?

We can model this logically via dynamic formulas [A]B
(read �after learning A, B holds�). Formally,

J[A]BKN = JBKHebb�(N;JAK)
Can we completely characterize [A]'s effect on the net?

Iterated Hebbian Learning

Theorem. The following axioms are sound:

[A]p $ p
[A]:B $ :[A]B
[A](B ^C) $ [A]B ^ [A]C
[A]KB $ K[A]B
[A]TB $ T([A]B ^ (TA_

K(TA_T [A]B)

Theorem. Assuming model building for the base lan-
guage, for all consistent ¡� L there is a net N such that
N� ¡
Theorem. Assuming completeness for the base lan-
guage, [A] is completely axiomatized by the reduction
axioms above.

Main Results

� Can we extend this to more sophisticated learning
policies? Consider: convergence, supervised learning,
single-step update . . .

� Could we do this analysis for backpropagation?

� How can we use this in practice to constrain nets
throughout their training? (AI Alignment)

� What is the relationship between neural network
learning and plausibility upgrade?
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