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The Neuro-Symbolic Problem

Symbolic Systems Neural Networks
v/ Sophisticated rich reasoning X Can’t readily learn rich inference
v/ Explainable decisions X “Black Box” decisions
X Notoriously rigid and static v/ Learns from experience
X Manual knowledge-engineering v/~ Uses unstructured data
: : Problem: a
penguin — bird o,
bird = flies <: How do we bridge :> O%%O\
the two? © © ©
o/
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Forward Propagation & Conditionals
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p =P

iff  Prop([e]) 2 [¢] ies]
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Leitgeb, Hannes. "Nonmonotonic reasoning by inhibition nets."
Artificial Intelligence, 2001.
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Learning Conditionals

penguin — bird
bird = flies

penguin — bird
bird = flies
—(penguin = flies)

=
Model Building

[] Learning
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Simplifying Assumptions
N =(N,E,W,A,O,n)

1. Netis Feedforward
2. Activations are monotonically increasing 1
3. Neuron outputs are binary /'
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Hebbian Learning

Neurons that fire together wire together

flies

orca

AWij = NX3T4
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Prop and Inc

Prop : Set — Set
Prop(.S) means forward-propagate S in the net.

InC : Net x Set — Net

Inc(NV, S) means increase the weights of edges within
PrOp(S) by AWZ] = NT;T;
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The Logic

plTl-olerAple—=0le=¢|Te|pTe
[Te] = Prop([«¢])

[let1¥] = [Wlincov, 1)
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Some Axioms & Rules

Basic Axioms (NEC}) i
(BCH All proposotional tautologies (C.) b—p _lo*ooy
(DuAL)  (T)p & —-T-p lpridslerle, o
(N) TT (Loop,) L& ]("'w“”'{*{;1'}[51“:.2 e
(T) Tp — ¢ Reduction Axioms
(4) To — TTyp (Rp) [T p < p
Inference Rules (R-) [T < —[p v
(MP) 2P0y (EA) {fh Ap) « (g v A leTp)
.. ool ESTt R
(13F) 'I?%I‘ jf%(‘ | ]) %(ey ixme i
(C=) - (NS) (T Ty — T[pH ]y
(Loop-,) £o=#u Yiij dima L (TP) T[o 1]y ATy — [TV
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The Key Axioms

(No Surprises) (Typicality Preservation)
™Iy — T[T ]y Tle ™Y ATy — [T Ty

w INDIANA UNIVERSITY BLOOMINGTON




Working Code!

bird 1

pengunl

@

ﬂles

[[01ca]] = Th e}
[zebra] = {b,d}

[panda] = {b, e}
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N [= T(penguin) — flies, yet
N £ [orcat][zebra™|[panda™](T (penguin) — flies)

print(model.is_model("(typ penguin) implies flies"))
True

print(model. is_model( "orca+ zebra+ panda+ \
((typ penguin) implies flies)"))

False




github.com/ais-climber/neural-semantics

& (& & github.com/ais-climber/neural-semantics Q % N o
i Apps M Email &Social @R internships-sum... [ internstatus @ COREComputer.. @ COREComputer.. @ cv.pdf W blancocv.pdf ¥ Cv.pdf A\ 1988-Normal Mul... » | [E
‘= README.md 2 ® 1 watching
% o forks

Neural Semantics

Releases
A neuro-symbolic interface, intended for both model extraction (extracting knowledge from a net) as well as o1
model building (building a net from a knowledge base). The name comes from the core idea -- that the T
internal dynamics of neural networks can be used as formal semantics of knowledge bases. Create a new release
NOTE: This program is currently very much in development, and many of the planned features involve
significant research efforts (this is my PhD). So what the program can do right now is somewhat limited. Packages
r . i ) pcnguin — bird No packages published
penguin — bird Knowledge | bird = flies Publish your first package
bird = flies r| Engineering |- e "
—(penguin = flies)
Model Buiding 4 Languages

Extraction

@ Python 100.0%

[] Learning
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Future Work: The Dream

1. Model Building (i.e. Completeness)

2. First-order logic
3. Nonbinary (fuzzy-valued) output
4. More varied activation functions (e.g. ReLU)

5. Learning via backpropagation
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Questions?
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Contact: cckishy@iu.edu
github.com/ais-climber/neural-semantics
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Cardinal, penguin, and orca images https://www.statecollege.com/wp-content/uploads/2021/01/1482147_44895.jpg
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https://i.natgeofe.com/k/0dc6e854-7054-4249-98c7-86de63e6333a/orca-spyhopping_square.jpg




Appendix / Helper Slides

w INDIANA UNIVERSITY BLOOMINGTON




The Logic: Rules of Inference

EC) All proposotional tautologies
(DuAL) (T)p < —-T—op
(N) ol
(T) Ty =
(4) T — TTp
—
b1y
© g
(IYP) 1553 o=
(C.) o= V=@
(LOOP ) ‘PO:;)O‘P?"IP"PIC—l:NPk Pr=%0
= PO=>Pk
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The Logic: Rules of Inference

(NEC—!-) Ezpfhb AP

(C+) [fﬁ]¢£[¢ﬁ1p+ X
(Loop,) £ ]wo_’wl“'[‘ﬁprﬁzo—i}zrk [ ]k =10
(Rp) :QO+]p <D

(R-) ot < [ty

(Rn) :s0+](¢ Ap) < ([eT]Y A eT]p)
(NEsTr) [Tot]y & [pT]

(NS) (T Ty — Tl

(TP) T[] AT — [T TY
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Future Work: Completeness

, ; penguin — bird
penguin— bird <] Knowedge | bird = flies
bird = flies Engineering : ;
—(penguin = flies)

a £
Model Building

Extraction

[] Learning
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