

The Logic of Hebbian Learning

Caleb Kisby, Saúl Blanco, Larry Moss Contact: cckisby@iu.edu

INDIANA UNIVERSITY BLOOMINGTON

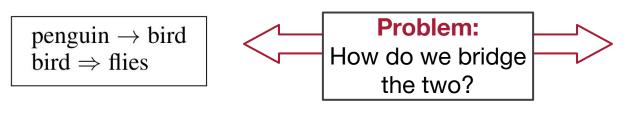
The Neuro-Symbolic Problem

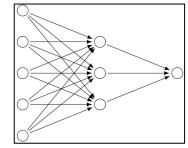
Symbolic Systems

- Sophisticated rich reasoning
- Explainable decisions
- X Notoriously rigid and static
- X Manual knowledge-engineering

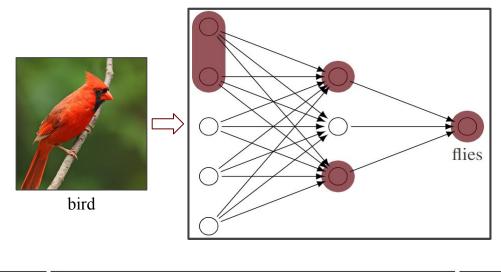
Neural Networks

- X Can't readily learn rich inference
 - "Black Box" decisions
 - Learns from experience
 - / Uses unstructured data





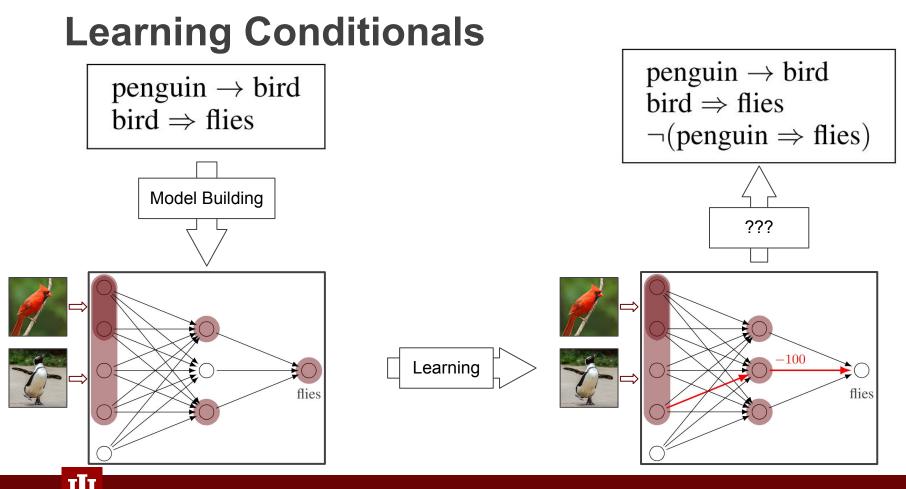
Forward Propagation & Conditionals



bird
$$\varphi \Rightarrow \psi$$
 iff $\operatorname{Prop}(\llbracket \varphi \rrbracket) \supseteq \llbracket \psi \rrbracket$ ies

INDIANA UNIVERSITY BLOOMINGTON

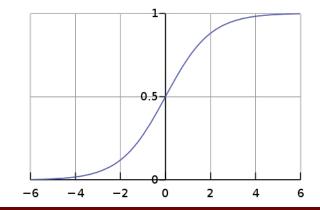
Leitgeb, Hannes. **"Nonmonotonic reasoning by inhibition nets."** *Artificial Intelligence*, 2001.



INDIANA UNIVERSITY BLOOMINGTON

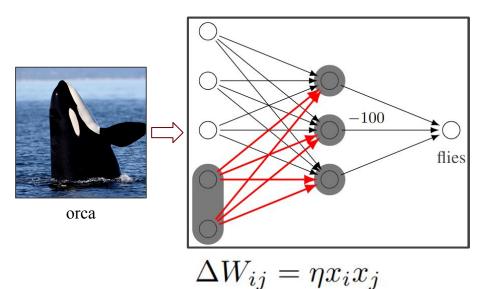
Simplifying Assumptions

- $\mathcal{N} = \langle N, E, W, A, O, \eta \rangle$
- 1. Net is **Feedforward**
- 2. Activations are monotonically increasing
- 3. Neuron outputs are binary



Hebbian Learning

Neurons that fire together wire together



Prop and Inc

 $\begin{array}{l} \mathsf{Prop}: \mathsf{Set} \to \mathsf{Set} \\ \mathsf{Prop}(S) \text{ means } \textit{forward-propagate } S \text{ in the net.} \end{array}$

 $\begin{array}{l} \mathsf{Inc}: \mathsf{Net} \times \mathsf{Set} \to \mathsf{Net} \\ \mathsf{Inc}(\mathcal{N},S) \text{ means increase the weights of edges within} \\ \mathsf{Prop}(S) \text{ by } \Delta W_{ij} = \eta x_i x_j \end{array}$

The Logic

$p \mid \top \mid \neg \varphi \mid \varphi \land \varphi \mid \varphi \to \varphi \mid \varphi \Rightarrow \varphi \mid \mathbf{T}\varphi \mid [\varphi^+]\varphi$

$\llbracket \mathbf{T} \varphi \rrbracket = \mathsf{Prop}(\llbracket \varphi \rrbracket)$

$\llbracket [\varphi^+] \psi \rrbracket = \llbracket \psi \rrbracket \operatorname{Inc}(\mathcal{N}, \llbracket \varphi \rrbracket)$

Some Axioms & Rules

OMINGTON

	Basic Axioms
(PC)	All proposotional tautologies
(DUAL)	$\langle \mathbf{T} angle arphi \leftrightarrow \neg \mathbf{T} \neg arphi$
(N)	$\mathbf{T}^{ op}$
(T)	$\mathbf{T}arphi ightarrow arphi$
(4)	$\mathbf{T} arphi ightarrow \mathbf{T} \mathbf{T} arphi$
	Inference Rules
(MP)	$\frac{\varphi \varphi \rightarrow \psi}{\psi}$
(TYP)	$\frac{\varphi \Rightarrow \psi}{\mathbf{T} \varphi \rightarrow \psi} \frac{\mathbf{T} \varphi \rightarrow \psi}{\varphi \Rightarrow \psi}$
(C_{\Rightarrow})	$\varphi \rightarrow \psi \psi \Rightarrow \varphi$
$(LOOP_{\Rightarrow})$	$\frac{\varphi_0 \Rightarrow \varphi_1 \cdots \varphi_{k-1} \Rightarrow \varphi_k \varphi_k \Rightarrow \varphi_0}{\varphi_0 \Rightarrow \varphi_k}$

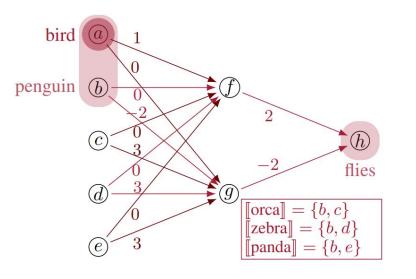
(NEC_+)	$\frac{\psi}{[\varphi^+]\psi}$
(C_+)	$\frac{\psi \to \rho [\varphi^+] \rho \to \psi}{[\varphi^+] \psi \leftrightarrow [\varphi^+] \rho}$
$(LOOP_+)$	$\frac{[\varphi^+]\psi_0 \to \psi_1 \cdots [\varphi^+]\psi_{k-1} \to \psi_k [\varphi^+]\psi_k \to \psi_0}{[\varphi^+]\psi_0 \to \psi_k}$
Reduction Axioms	
(\mathbf{R}_p)	$[\varphi^+]p \leftrightarrow p$
(R_{\neg})	$[\varphi^+]\neg\psi\leftrightarrow\neg[\varphi^+]\psi$
(\mathbf{R}_{\wedge})	$[\varphi^+](\psi \land \rho) \leftrightarrow ([\varphi^+]\psi \land [\varphi^+]\rho)$
$(NEST_T)$	$[\mathbf{T}\varphi^+]\psi \leftrightarrow [\varphi^+]\psi$
	Key Axioms
(NS)	$[\varphi^+]\mathbf{T}\psi o \mathbf{T}[\varphi^+]\psi$
(TP)	$\mathbf{T}[\varphi^+]\psi\wedge\mathbf{T}arphi ightarrow [arphi^+]\mathbf{T}\psi$

IND

The Key Axioms

(No Surprises) $[\varphi^+]\mathbf{T}\psi \to \mathbf{T}[\varphi^+]\psi$ (Typicality Preservation) $\mathbf{T}[\varphi^+]\psi \wedge \mathbf{T}\varphi \rightarrow [\varphi^+]\mathbf{T}\psi$

Working Code!

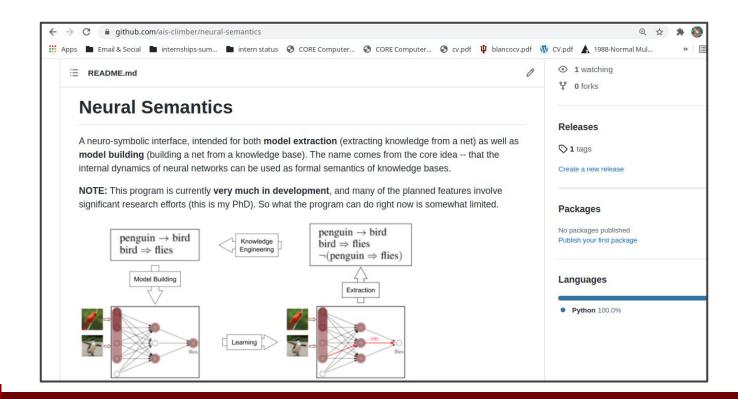


 $\mathcal{N} \models \mathbf{T}(\text{penguin}) \rightarrow \text{flies, yet}$ $\mathcal{N} \not\models [\text{orca}^+][\text{zebra}^+][\text{panda}^+](\mathbf{T}(\text{penguin}) \rightarrow \text{flies})$

print(model.is_model("(typ penguin) implies flies"))
True

False

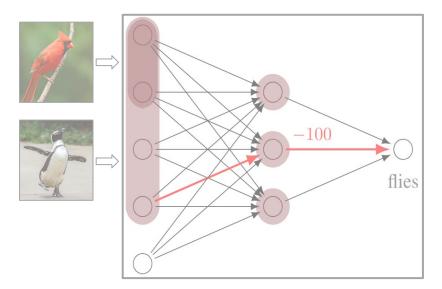
github.com/ais-climber/neural-semantics



Future Work: The Dream

- 1. Model Building (i.e. Completeness)
- 2. First-order logic
- 3. Nonbinary (fuzzy-valued) output
- 4. More varied activation functions (e.g. ReLU)
- 5. Learning via backpropagation

Questions?



Contact: cckisby@iu.edu

github.com/ais-climber/neural-semantics

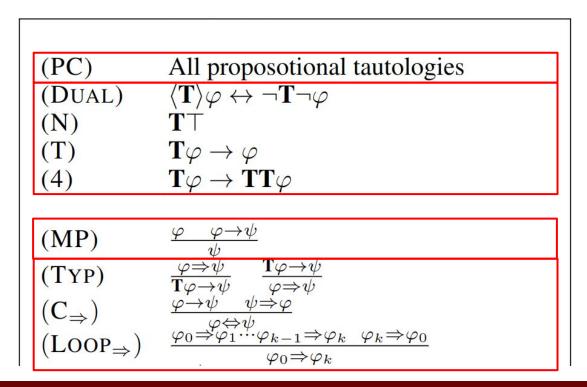
INDIANA UNIVERSITY BLOOMINGTON

Cardinal, penguin, and orca images belong to:

https://www.statecollege.com/wp-content/uploads/2021/01/1482147_44895.jpg https://cincinnatizoo.org/system/assets/uploads/2020/08/charlie-240x300.jpg https://i.natgeofe.com/k/0dc6e854-7054-4249-98c7-86de63e6333a/orca-spyhopping_square.jpg

Appendix / Helper Slides

The Logic: Rules of Inference



The Logic: Rules of Inference

