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Abstract

We present the logic of Hebbian learning, a dynamic logic
whose semantics1 are expressed in terms of a layered neural
network learning via Hebb’s associative learning rule. Its lan-
guage consists of modality Tφ (read “typically φ,” formalized
as forward propagation), conditionals φ ⇒ ψ (read “typi-
cally φ are ψ”), as well as dynamic modalities [φ+]ψ (read
“evaluate ψ after performing Hebbian update on φ”). We give
axioms and inference rules that are sound with respect to the
neural semantics; these axioms characterize Hebbian learning
and its interaction with propagation. The upshot is that this
logic describes a neuro-symbolic agent that both learns from
experience and also reasons about what it has learned.

Introduction
Artificial intelligence has long been marked by a schism be-
tween two of its major paradigms: symbolic reasoning and
connectionist learning. Neural systems have had wild suc-
cess with learning from unstructured data, whereas symbolic
reasoners are notorious for their rigidity. On the other hand,
symbolic systems excel at sophisticated (static) reasoning
tasks that neural systems cannot readily learn. Symbolic sys-
tems also tend to have more explainable reasoning, thanks to
their use of explicit inferences in an intuitive language. More-
over, due to their connection with logic, it is straightforward
to compare the relative power and complexity of different
symbolic reasoners.

But as Valiant famously put it, intelligent cognitive agents
must have both “the ability to learn from experience, and the
ability to reason from what has been learned” (Valiant 2003).
Neuro-symbolic artificial intelligence has emerged in the last
few decades to address this challenge — a monumental effort
to integrate neural and symbolic systems, while retaining the
advantages of both (see (Bader and Hitzler 2005) and (Sarker
et al. 2021), two surveys that span the decades). Despite the
cornucopia of neuro-symbolic proposals, the field has not
yet agreed on an interface between the two that satisfyingly
preserves both flexible learning and expressive reasoning.
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1A Python implementation of our semantics, using Ten-

sorflow & Keras (Abadi and others 2015)), is available at
https://github.com/ais-climber/neural-semantics

Following the path set out by (Balkenius and Gärdenfors
1991) and (Leitgeb 2001; 2003), we advance the following
proposal for the neuro-symbolic interface. Rather than view-
ing the neural and symbolic as two different systems to be
combined, we view them as two ways of interpreting the
same agent. More precisely, we view the dynamics of neural
networks as the semantics to a formal logic. This logic serves
as a bridge between the neural network model and formal
inference.

Previous work, particularly (Leitgeb 2001), has considered
how forward propagation in binary feed-forward nets forms
a sound and complete semantics for the (static) conditional
logic CL (loop-cumulative). The novelty of our paper is that
we extend this logic by viewing a simple learning policy —
Hebbian update (“neurons that fire together wire together”)
— as a dynamic modality. By doing so, we demonstrate that
the dynamics of Hebbian learning (in binary feed-forward
nets) directly corresponds to a particular dynamic multimodal
logic that we call the logic of Hebbian learning. This logic
meets Valiant’s challenge: It characterizes a cognitive agent
that can learn from experience and also reason about what it
has learned.

Our main result is the soundness of axioms and inference
rules that characterize Hebbian learning. The most interest-
ing axioms involve the interaction between Hebbian update
and forward propagation. We also demonstrate how our logic
models the learning of a concrete neural network. And al-
though we leave the question of completeness open, we close
by considering the importance of completeness for logics of
this kind.

Related Work
Logics with Neural Semantics. The idea that we can view
neural networks as the semantics for symbolic reasoning
dates back to (McCulloch and Pitts 1943). Our work builds
on a recent reimagining of this à la (Balkenius and Gärdenfors
1991), (Leitgeb 2001; 2003; 2018), which formally charac-
terize the dynamics of inhibitory neural networks as con-
ditional logics. Similarly, (Blutner 2004) demonstrates that
Hopfield networks correspond to the logic of what he calls
“weight-annotated Poole systems.” More recently, (Giordano,
Gliozzi, and Dupré 2021) describe multilayer perceptrons
and self-organizing maps in terms of typicality in defeasible
description logics. Yet no neural semantics to date has tackled



the issue of learning — doing this for Hebbian learning is
precisely the contribution of our paper.

Neuro-Symbolic AI. Across the neuro-symbolic literature,
an ubiquitous premise is that integration involves combining
or composing otherwise distinct neural and symbolic mod-
ules. In contrast, this paper presents the neural and symbolic
as two perspectives we can have about the same agent.

To our knowledge, the combined work of (Garcez, Broda,
and Gabbay 2001) and (Garcez, Lamb, and Gabbay 2008) is
the only neuro-symbolic proposal (besides neural semantics,
see above) that exhibits this intimate interface between the
two. The former gives a formally sound method for extracting
conditionals from a network and the latter gives a method
for build neural network models from rules (in a variety of
different logics). When combined, we can freely translate
between a neural network and its beliefs. But unlike our work,
this framework does not offer a logical account of the neural
network’s learning.

Dynamic Logics for Learning. Two recent papers, (Baltag
et al. 2019) and (Baltag, Li, and Pedersen 2019), also present
dynamic multimodal logics that characterize learning. The
former models an individual’s learning in the limit, whereas
the latter models supervised learning as a game played be-
tween student and teacher. But it is unclear how learning
policies expressed in these logics might relate to specific
neural implementations of learning such as Hebbian update
and backpropagation.

Furthermore, the syntax and inferences of our logic do
not resemble either of these in a meaningful way. Perhaps
the closest logics to ours are dynamic logics of preference
upgrade, in the sense of (Van Benthem and Liu 2007). In
particular, consider the modalities [⇑φ] (lexicographic up-
grade) and [↑φ] (elite change) (Van Benthem 2007). Both of
these operators implement policies for modifying an agent’s
preference relation< over possible worlds. As with our logic,
the key axioms characterizing these policies deal with their
interaction with conditionals φ ⇒ ψ. But the semantics of
our logic have a different flavor; we leave the issue of how
our neural semantics relate to classical preference relations
to future work. In addition, both [⇑φ] and [↑φ] are reducible
to the static language of conditionals, whereas it is presently
unclear how our [φ+] might reduce to its base language.

Background
Neural Network Models
A model of the logic of Hebbian learning is just a special type
of artificial neural network that we call a binary feedforward
neural network (BFNN).
Definition 1. A BFNN is a pointed directed graph
N = ⟨N,E,W,A,O, η⟩, where
• N is a finite nonempty set (the set of neurons)
• E ⊆ N ×N (the set of excitatory connections)
• W : N ×N → R (the weight of a given connection)
• A is a function which maps each n ∈ N toA(n) : Rk → R

(the activation function for n, where k is the indegree of
n)

• O is a function which maps each n ∈ N to O(n) : R →
{0, 1} (the output function for n)

• η ∈ R, η ≥ 0 (the learning rate)

Moreover, BFNNs are feed-forward, i.e. they do not contain
cycles of edges with all nonzero weights. BFNNs are also
binary, i.e. the output of each neuron is in {0, 1}. This binary
assumption is unrealistic in practice, although letting it go
is just a matter of extending our two-valued logic towards a
fuzzy-valued logic (left to future work).

We further require that each composition of activation
and output functions O(n) ◦A(n) is strictly monotonically
increasing, i.e. for all x⃗, y⃗ ∈ Rk,

If x⃗ < y⃗ then O(n)(A(n)(x⃗)) < O(n)(A(n)(y⃗))

Our activation functions include in particular those sigmoid
functions commonly used for neural networks in practice.

We write Wij to mean W (i, j), for (i, j) ∈ E. When
mi is drawn from a sequence m1, . . . ,mk, we write
A(n)(

−→
W (mi, n)) as shorthand instead of the full expression

A(n)(W (m1, n), . . . ,W (mk, n)).

The Dynamics of Propagation
Of course, BFNNs are not merely static directed graphs,
but are dynamic in nature. When a BFNN receives a signal
(which we model as the initial state), it propagates that signal
forward until the state of the net stabilizes. This stable state
of the net is considered to contain the net’s response (answer)
to the given signal (question). We model forward propagation
as follows, drawing heavily from the approach proposed by
(Leitgeb 2001).2

We consider a neuron n active if its activationA(n) triggers
an output O(n) of 1 (intuitively, if the neuron fires). Since
our BFNNs are binary, either a given neuron is active (1) or
it is not (0). So we can identify the state of N with the set of
neurons that are active. For a given BFNN N , let its set of
states be

Set = {S | S ⊆ N}

Neurons in a state S ∈ Set can subsequently activate new
neurons, which activate yet more neurons, until eventually
the state of N stablizes. We call this final state of affairs
Prop(S), the propagation of S.

Definition 2. Let Prop : Set → Set be defined recursively
as follows: n ∈ Prop(S) iff either

(Base Case) n ∈ S, or
(Constructor) For those m1, . . . ,mk ∈ Prop(S) such
that (mi, n) ∈ E we have

O(n)(A(n)(
−→
W (mi, n))) = 1

2Note that (Leitgeb 2001) defines propagation for inhibition
nets, i.e. weightless BFNNs with both excitatory and inhibitory
connections. But this paper also proves that inhibition nets and
BFNNs are equivalent with respect to their propagation structure.
So we import the ideas and results here.



Alternatively, consider a finite automaton with state space
Set and transition function FS∗ : Set → Set tracking the
propagation of an initial state S∗ through N . We can view
Prop(S∗) as a fixed point of FS∗ (Leitgeb 2001).

The key insight of (Leitgeb 2001) is that we can neatly
characterize the algebraic structure of Prop as a closure op-
erator.

Theorem 1. Let N ∈ Net. For all S, S1, S2 ∈ Set,

• (Inclusion) S ⊆ Prop(S)
• (Idempotence) Prop(S) = Prop(Prop(S))
• (Cumulative) If S1 ⊆ S2 ⊆ Prop(S1)

then Prop(S1) = Prop(S2)

• (Loop) If S1 ⊆ Prop(S0), . . . , Sn ⊆ Prop(Sn−1) and
S0 ⊆ Prop(Sn), then Prop(Si) = Prop(Sj)
for all i, j ∈ {0, . . . , n}
Crucially, Prop is not monotonic — it is not the case

that for all S1, S2 ∈ Set, if S1 ⊆ S2, then Prop(S1) ⊆
Prop(S2). The reason for this is that a BFNN’s weights Wij

can be negative, which allows S2 to inhibit the activation of
new neurons that were otherwise activated by S1. But in place
of monotonicity, Prop is loop-cumulative (in the terminology
of (Kraus, Lehmann, and Magidor 1990)).

From Hebbian Learning to Logic
The Dynamics of Hebbian Learning
The plan from here is to extend this logic of propagation
by providing an account of Hebbian learning. Our goal is to
cast Hebbian update as a dynamic modality, so that we can
explore its interactions with Prop in symbolic language. As
with Prop, we start by outlining the algebraic structure of
Hebbian update.

Hebb’s classic learning rule (Hebb 1949) states that when
two adjacent neurons are simultaneously and persistently
active, the connection between them strengthens. In contrast
with, e.g. backpropagation, Hebbian learning is errorless
and unsupervised. Another key difference is that Hebbian
update is local — the change in a weight ∆Wij depends
only on the activation of the immediately adjacent neurons.
For this reason, the Hebbian family of learning policies has
traditionally been considered more biologically plausible
than backpropagation. There are many variations of Hebbian
learning, but we only consider the most basic (unstable, no
weight decay) form of Hebb’s rule: ∆Wij = ηxixj , where
η is the learning rate and xi, xj are the outputs of adjacent
neurons i and j, respectively.

In order to incorporate Hebb’s rule into our framework,
we introduce a function Inc (“increase the weights”) to
strengthen those edges in a BFNN N whose neurons are
active when we feed N a signal S ∈ Set.

Definition 3. For S ∈ Set, let χS : N → {0, 1} be given
by χS(n) = 1 iff n ∈ S

Definition 4. Let Inc : Net× Set → Net be given by
Inc(⟨N,E,W,A,O, η⟩, S) = ⟨N,E,W ∗, A,O, η⟩, where

W ∗
ij =Wij + η · χProp(S)(i) · χProp(S)(j)

Notice that we propagate S before getting the active sta-
tus of neurons. This is because otherwise we would never
strengthen connections beyond the input layer.

We were able to formulate the algebraic properties of Prop
in terms of Set containment. Similarly, we express the prop-
erties of Inc in terms of Net containment.

Definition 5. Let N1,N2 ∈ Net differ only in their weights.
We write

N1 ⪯ N2

to mean that for all S ∈ Set, PropN1
(S) ⊆ PropN2

(S). We
use ∼= to express that N1 ⪯ N2 and N2 ⪯ N1.

For example, Inc(N , S) is a supernet of N because
strengthening weights via the Inc operation only has the po-
tential to expand future propagations. To further cement this
intuition, consider the least upper bound N lub of ⪯. N lub is
that net whose weights have been “maximally” strengthened,
and so every propagation Prop(S) results in the entire set N .

We have the following test to determine if N1 ⪯ N2.

Lemma 2. Suppose N1 and N2 are the same except for their
weights, and let S ∈ Set. Then PropN1

(S) ⊆ PropN2
(S)

iff for all n ∈ PropN1
(S) and for those m1, . . . ,mk ∈

PropN1
(S) such that (mi, n) ∈ E,

O(n)(A(n)(
−→
WN1

(mi, n))) = 1

implies

O(n)(A(n)(
−→
WN2(mi, n))) = 1

(∗)

Corollary 1. Let N1,N2 be the same except for their weights.
Then N1 ⪯ N2 iff for all n ∈ N and for thosem1, . . . ,mk ∈
N such that (mi, n) ∈ E, (∗) holds.

Notice that the right-hand side of this biconditional does
not mention Prop; this test reduces the dynamic condition
(N1 ⪯ N2) to a static condition (a statement about the rela-
tive weights between N1 and N2).

These two facts are exactly what we need for the following
algebraic characterization of Inc.

Theorem 3. For all N ,N1,N2 ∈ Net and S, S1, S2 ∈ Set,
Inc satisfies

• (Inclusion) N ⪯ Inc(N , S)

• (Absorption) Inc(N ,Prop(S)) ∼= Inc(N , S)

• (Monotonicity in N ) if N1 ⪯ N2

then Inc(N1, S) ⪯ Inc(N2, S)

• (Local)
PropInc(N ,S2)

(S1) ⊆ PropN (S1) ∪ PropN (S2)

• (Cumulative) If PropN (S1) ⊆ PropN (S2)
and PropN (S2) ⊆ PropInc(N ,S)(S1),
then PropInc(N ,S)(S1) = PropInc(N ,S)(S2)

• (Loop) If PropN (S1) ⊆ PropInc(N ,S)(S0),
. . . ,PropN (Sn) ⊆ PropInc(N ,S)(Sn−1),
and PropN (S0) ⊆ PropInc(N ,S)(Sn),
then PropInc(N ,S)(Si) = PropInc(N ,S)(Sj)

for all i, j ∈ {0, . . . , n}



Like Prop, Inc is loop-cumulative (in S). But also like
Prop, Inc is not monotonic in S. For a counterexample of S-
monotonicity, see Figure 2 (discussed in more detail towards
the end of this paper).

Syntax and Semantics
We can now introduce the logic of Hebbian learning. Let
p, q, . . . be finitely many propositional variables. These rep-
resent fixed, ‘ontic’ states, i.e. established choices of neurons
that correspond to features in the external world. For example,
p might be the set of neurons that encapsulates the color pink.
We presume that we already agree on these states, although
we acknowledge that this is a major unresolved empirical
issue. As for more complex formulas:

Definition 6. Formulas of our language L are given by

φ ::= p | ⊤ | ¬φ | φ ∧ φ | φ→ φ | φ⇒ φ | Tφ | [φ+]φ

where p is any propositional variable. We define ⊥, ∨, ↔,
⇔, and their duals ⟨T⟩, ⟨φ+⟩ in the usual way.

The modalities T and [φ+] reflect our two operations Prop
and Inc, respectively. We intend for Tφ to denote “the propa-
gation of signalφ,” and for [φ+]ψ to denote “after performing
Hebbian update on φ, evaluate ψ.” We import φ⇒ ψ from
(Leitgeb 2001), read “the propagation of signal φ contains
ψ”. Note that φ⇒ ψ is redundant (equivalent to Tφ → ψ
using the semantics below), though we keep it in our syntax
because it conveniently expresses “the net classifies φ as ψ”
(if φ is interpreted as an input and ψ as a classification).

Our formulas also have more classical alternative readings,
divorced from the dynamics of neural networks. Following
(Leitgeb 2001), we will define φ ⇒ ψ such that it has the
conditional reading “typically φ are ψ” (where φ and ψ
are read as generics, e.g. “typically birds fly”). This gives
us a natural preferential reading for Tφ as “typically φ” or
“the typical φ.”3 Finally, Hebbian learning [φ+]ψ has a dual
reading as preference upgrade (Van Benthem and Liu 2007).
As mentioned in the Related Work section, we leave the
question concerning how [φ+] can be viewed classically as
updating a preference relation to future work.

A model of our logic is just a BFNN N equipped with an
interpretation function [[·]] : L → SetN .

Definition 7. Let N ∈ Net. Our semantics are defined recur-
sively as follows:

[[p]] ∈ Set is fixed, nonempty
[[⊤]] = ∅
[[¬φ]] = [[φ]]
[[φ ∧ ψ]] = [[φ]] ∪ [[ψ]]
[[φ→ ψ]] = [[⊤]] iff [[φ]] ⊇ [[ψ]], else [[⊥]]
[[φ⇒ ψ]] = [[⊤]] iff Prop([[φ]]) ⊇ [[ψ]], else [[⊥]]
[[Tφ]] = Prop([[φ]])
[[[φ+]ψ]] = [[ψ]]Inc(N ,[[φ]])

3Our notation takes inspiration from (Giordano, Gliozzi, and
Dupré 2021), which formalizes the dynamics of a net via a con-
cept constructor T in the description logic ALC. Note the subtle
difference between their typicality inclusions T(φ) ⊑ ψ and our
Tφ→ ψ: Ours flips the direction of containment.

It may seem odd that we interpret ∧ as union (instead of in-
tersection), → as superset (instead of subset), and ⊤ as ∅ (in-
stead of N ). But this choice reflects the intuition that neurons
act as “elementary-feature-detectors” (Leitgeb 2001). For ex-
ample, say [[φ]] represents those neurons that are necessary for
detecting an apple, and [[ψ]] represents those neurons that are
necessary for detecting the color red. If the net observes a red
apple (φ∧ψ), both the neurons detecting red-features [[φ]] and
the neurons detecting apple-features [[ψ]] necessarily activate,
i.e. [[φ]] ∪ [[ψ]] activates. As for implication, “every apple is
red” (φ→ ψ) holds for a net iff whenever the neurons detect-
ing apple-features [[φ]] necessarily activate, so do the neurons
detecting red-features [[ψ]]. But this is only true if [[φ]] ⊇ [[ψ]].
This justifies us reading propositional connectives classically,
despite the backwards flavor of the semantics.

Our interpretation of formulas is completely algebraic, in
the sense that formulas denote sets rather than truth-values.
But we can consider formulas to have truth-values as follows.
Definition 8. N |= φ iff [[φ]]N = ∅.

This choice also appears to be strange at its surface. But it
is a natural one in light of the fact that we defined [[⊤]] := ∅.
For example, consider implication: N |= φ → ψ holds iff
[[φ→ ψ]] = ∅ = [[⊤]], which holds iff [[φ]] ⊇ [[ψ]] by our
semantics.

A curious consequence is that if N |= φ and φ cannot
be written to contain an implication →, then φ must be a
tautology. But we do not consider this troubling, since it only
makes sense to consider a neural network’s judgment of φ
when given a state [[ψ]] the net is in.

Inference and Axioms
The proof system for our logic is as follows. We have ⊢ φ iff
either φ is an axiom, or φ follows from previously obtained
formulas by one of the inference rules. If Γ ⊆ L is a set of
formulas, we consider Γ ⊢ φ to hold whenever there exist
finitely many ψ1, . . . , ψk ∈ Γ such that ⊢ ψ1∧ . . .∧ψk → φ.

We list the axioms and inference rules for our logic in
Figure 1. Our main result is the soundness of these axioms
and rules — we do not claim that this list forms a complete
axiomatization (we revisit the question of completeness in
the Conclusion).

The static base of our logic can either be viewed as the
conditional logic CL (loop-cumulative), or alternatively as
the modal logic characterized by T along with inference
rules (C⇒), (LOOP⇒) expressing the loop-cumulativity of
Prop. Linking these perspectives is the rule (TYP). As a
modality, T is neither normal, regular, nor monotonic, but it
is classical. Note for instance that the normal modal property
(K) (expressed in terms of T) is equivalent to

(K) T(φ ∧ ψ) ↔ (Tφ ∧ Tψ)

neither direction of which is sound in our logic.
As with T, we have the inference rules (NEC+),

(C+), (LOOP+) for [φ+] (the latter two express the loop-
cumulativity of Inc). Since Hebbian update only affects
the propagation of states, we have reduction axioms
(Rp), (R¬), (R∧), as well as a reduction axiom (NESTT) for
terms that nest T within [φ+].



Basic Axioms
(PC) All proposotional tautologies
(DUAL) ⟨T⟩φ↔ ¬T¬φ
(N) T⊤
(T) Tφ→ φ
(4) Tφ→ TTφ

Inference Rules
(MP) φ φ→ψ

ψ

(TYP) φ⇒ψ
Tφ→ψ

Tφ→ψ
φ⇒ψ

(C⇒) φ→ψ ψ⇒φ
φ⇔ψ

(LOOP⇒) φ0⇒φ1···φk−1⇒φk φk⇒φ0

φ0⇒φk

(NEC+)
ψ

[φ+]ψ

(C+)
ψ→ρ [φ+]ρ→ψ
[φ+]ψ↔[φ+]ρ

(LOOP+)
[φ+]ψ0→ψ1···[φ+]ψk−1→ψk [φ+]ψk→ψ0

[φ+]ψ0→ψk

Reduction Axioms
(Rp) [φ+]p↔ p
(R¬) [φ+]¬ψ ↔ ¬[φ+]ψ
(R∧) [φ+](ψ ∧ ρ) ↔ ([φ+]ψ ∧ [φ+]ρ)
(NESTT) [Tφ+]ψ ↔ [φ+]ψ

Key Axioms
(NS) [φ+]Tψ → T[φ+]ψ
(TP) T[φ+]ψ ∧ Tφ→ [φ+]Tψ

Figure 1: A list of sound rules and axioms of the logic of
Hebbian learning. We leave the question of completeness to
future work.

In lieu of a full reduction for [φ+]Tψ, we instead have the
weaker axioms (NS) and (TP). These two axioms capture
key cognitive biases of a Hebbian agent. Consider the axiom
(TP), i.e. (Typicality Preservation)

(TP) T[φ+]ψ ∧ Tφ→ [φ+]Tψ

This says that if our agent expects ψ is normally true after
learning φ, but she also happens to expect φ, then after learn-
ing φ the typicality of ψ will be preserved. This is a peculiar
kind of cognitive bias whereby a Hebbian agent maintains her
prior attitudes when presented with news she already expects.

The axiom (NS), i.e. (No Surprises)

(NS) [φ+]Tψ → T[φ+]ψ

says that if after learning φ, our agent thinks normally ψ,
then she would have expected ψ to be true after learning φ in
the first place. Loosely: She will never be surprised.

Soundness of these axioms is just a matter of matching
each axiom with its corresponding property of Inc.
Theorem 4. The rules and axioms above are sound, i.e. hold
for all N ∈ Net.

Applying the Logic: A Concrete Example
We now demonstrate our neuro-symbolic interface by way
of an example neural network in a machine learning context.
The task: Given an image of an animal, classify it as flying or
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bird

penguin

flies

1

0

0
−2
0
3
0
3

0

3

2

−2

[[orca]] = {b, c}
[[zebra]] = {b, d}
[[panda]] = {b, e}

Figure 2: A BFNN N , equipped with the ReLU activation
function, T = 1, and η = 1. After observing the dataset
⟨orca, zebra, panda⟩, N learns that penguins do not fly, while
preserving the fact that birds typically fly.

non-flying. Suppose we have the partially pre-trained BFNN
N in Figure 2.

For simplification’s sake, let’s suppose that our animal
images can be reduced to 5-dimensional vectors in order to
be fed into the input layer of N . Say:

penguin ⟨11000⟩ orca ⟨01100⟩
zebra ⟨01010⟩ panda ⟨01001⟩

In addition, suppose an image activates the first node if and
only if it depicts a bird.

We can identify each animal with the set of nodes it ac-
tivates in the input layer. This gives us the sets shown in
Figure 2. We can also identify the class of things that fly
with the output node, i.e. [[flies]] = {h}. In principle we can
identify propositions with sets containing hidden nodes as
well, although in practice the meaning of hidden nodes is
often unclear.

With this interpretation in mind, we see that N |= bird ⇒
flies, but also N |= penguin ⇒ flies (which is incorrect). Our
hope is that N corrects this mistake via Hebbian learning.

Say we expose N to non-flying animals that share the
black-and-white color of penguins, e.g. we train N on the
dataset ⟨orca, zebra, panda⟩. The propagations of each in-
stance will increase Wbg. Once we have given N the entire
dataset (Wbg = 1), Prop([[penguin]]) will contain g, which
will cancel the signal given by f → h. Our logic successfully
models this behavior:

N |= [orca+][zebra+][panda+](bird ⇒ flies), yet
N ̸|= [orca+][zebra+][panda+](penguin ⇒ flies)

i.e. N learns that penguins do not fly while preserving the
fact that birds typically fly.

As it happens, if we modify N such that Wbg = 0 then
this serves as a counterexample to monotonicity in S (see
the discussion following Theorem 3). In particular, we have
N |= T(penguin) → flies, yet N ̸|= [orca+]T(penguin) →
[orca+]flies.

Conclusion and Future Work
In this paper, we gave sound axioms and rules characteriz-
ing the logic of Hebbian learning. This logic interfaces the



neuro-symbolic divide by characterizing conditionals ⇒ and
modalities T, [φ+] in terms of the propagation and Hebbian
update of signals in a neural network. The upshot of all this
is that this logic describes a neuro-symbolic agent that learns
associatively and also reasons about what it has learned.

We leave open the question of whether the axioms and
rules we list are complete. But we take this opportunity to
stress the importance of having strong completeness for log-
ics of this kind. Strong completeness for a static neural se-
mantics provides a bridge across which we can extract a set of
rules Γ from an interpreted network, and also build an inter-
preted neural network implementing Γ. But once the neural
network updates, we lose the interpretations of neurons that
allow for these translations. If we had strong completeness
for the dynamic logic, we could fully track the interpreta-
tions while the net learns and preserve this neuro-symbolic
correspondence.

Beyond the logic of Hebbian learning, we believe that
this framework will be a fruitful way to explore the neuro-
symbolic interface for a variety of neural networks and learn-
ing policies. Exciting future directions include:

1. Mapping more expressive syntax to neural activity
2. Generalizing to a broader class of neural networks
3. Generalizing to a broader class of activation functions
4. Characterizing other learning policies in logical terms
The holy grail of this line of work is to completely axioma-
tize the (1) first-order logic of (2) nonbinary (fuzzy-valued)
neural networks with (3) more varied (e.g. ReLU and GELU)
activation functions that (4) learn via backpropagation.
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