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Thanks, [PC]. I’m going to talk about two cute little logics that can reason com-
pletely about size comparison alongside intersection (in the first) and union (in the
second). These logics are computationally light; the best way to see them is as
fragments of more complex logics (like first-order logic and Boolean Algebra with
Presburger Arithmetic). Unfortunately, inference in these more expressive logics is
either undecidable or intractable in general. But the logics in this talk are small
enough to be polynomial-time decidable. So you can think of these logics as effi-
cient fragments of BAPA, involving only cardinality comparison and intersections
or unions.

It’s going to get confusing for me to say “intersections or unions” all the time, so
let’s focus on the logic with intersection. The logic with union is very similar.



What kind of inference?

All cats are mammals that purr
There are at least as many cats as purring things

All purring things are cats

2

First, let’s clear up exactly what kind of inference we’re talking about. Here’s a
characteristic kind of inference our system can make: If all cats are mammals that
purr, and there are at least as many cats as things that purr, then we can conclude
that all things that purr are cats. I’m going to pause to let you all make the inference
yourself.

(Pause to let the audience think this over)

This kind of inference has three basic components. First, a reasoner needs to know
something about nonstrict cardinality comparison (the thing going on there with
AtLeast). We also need to know something about set intersection – English phrases
like “mammals that purr” suggest something like the intersection between mammals
and purring things. Finally, there aren’t many interesting things we can say about
set sizes and intersection without also including set containment, which in this
example is indicated by the word All.
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Size & Intersection Inference in AI
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This kind of inference is abundant in artificially intelligent systems, especially those
with explicit knowledge representation and reasoning. Since this is the section
on inference and reasoning, the experts in the room probably don’t need to be
convinced of this. But those of you who come from learning, NLP, or otherwise,
maybe it would help to set a broader context.

A fun historical example is Terry Winograd’s SHRDLU, which makes basic infer-
ences about its small BLOCKS world. Via teletype, a user could ask SHRDLU
questions (in a fixed language) about the various sizes, positions, colors, and shapes
of the objects. The user could also ask SHRDLU to rearrange the objects.

Because the BLOCKS world was so simple, SHRDLU was able to make fairly sophis-
ticated inferences about its world. Lots of these inferences involved size comparison,
and a couple involve intersections between properties (like “that green pyramid”).
I dug through the usual SHRDLU demo and picked out the best example I could
find with this kind of inference. In the third line, the user asks SHRDLU to deter-
mine whether there is a block contained in the box (which we can represent as set
containment) that is narrower (here, size comparison) than “the [box] which I told
you to pick up” (which, if we squint hard enough, is an intersection.
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Size & Intersection Inference in AI

Now has a plugin that includes
the logic BAPA

Uses some size comparison
and containment when making

structured inference
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Most AI systems have moved beyond this kind of simple inference. But many hip-
and-happening AI systems still make use of this type of reasoning.

First, Microsoft’s SMT solver Z3 has recently been extended by Philippe Suter to
allow for reasoning in Boolean Algebra with Presburger Arithmetic. So their plugin
supports inferences on set relations (in Boolean Algebra), including set intersection
and union. Their plugin also supports numerical relations (in Presburger arithmetic)
and a cardinality function, which can then express cardinality comparison.

Additionally, the DeepQA framework used in IBM’s Watson has a number of smaller
components dealing with structured inference from knowledge bases. One of these
makes use of cardinality comparison and containment when determining spatial re-
lations between geographical regions. Two of the main spatial relations DeepQA
detects are distance and region containment. Although this reasoning is not explic-
itly encoded logically, DeepQA does make use of certain logical properties (such as
the transitivity of containment – which is an explicit rule in our logic!).

If you want to read this in more detail, I recommend taking a look at Kalyanpur’s
paper describing how DeepQA uses structured inference.
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Syntax

All hippies can vote
All hippies are vegetarian

All people can vote
There are at least as many people as things that can vote

There are at least as many hippies as people

All vegetarian people are hippies

5

So far, I’ve only shown you reasoning about sizes with intersection “out in the wild”
(and I’ve been pretty generous in interpreting some of these examples to fit this
kind of reasoning). So I should clarify what syntax, specifically, our logic uses.

I’ll illustrate with another example inference our system can make. This inference
is in fact valid, but this takes some time to see so we won’t dwell on it. Let’s see
how we would translate this inference using formal language.

First, all noun phrases involved become base terms (I’m going to use C to stand in
for “things that can vote”). I’m gonna go ahead and turn “vegetarian people” into
an intersection term. We encode “there are at least as many as” using the simplified
relation AtLeast. And as for “all x are y”, we have almost no simplification to do.

Alright, so this is the formal syntax of our logic. We have the two relations AtLeast
and All, and our terms can either be base terms like H,C, V, P , or can be intersection
terms like V ∩ P .

I should mention that our system only includes nonstrict cardinality comparison.
You might be wondering about strict cardinality comparison, for example “there
are more apples than oranges.” I’ll talk more about strict cardinality comparison
towards the end.
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Semantics for A∩(card)

[[a]] ⊆ M

[[a ∩ b]] = [[a]] ∩ [[b]]

M |= AtLeast x y iff |[[x]]| ≥ |[[y]]|

M |= All x y iff [[x]] ⊆ [[y]]

Γ |= φ

Models M are finite!

6

We call the logic with intersection “A-inter-card.” The semantics are probably what
you would expect. Basic terms are just interpreted as sets (in particular, as subsets
of an underlying universe). An intersection term a ∩ b just denotes the intersection
of the two sets a and b.

The AtLeast relation just denotes “greater than or equal” on cardinalities. So
AtLeast x y holds whenever the cardinality of x is greater than or equal to the
cardinality of y. And finally, the All relation is just set containment: All x y holds
whenever the set x denotes is a subset of that for y.

As for entailment, φ follows from Γ if every finite model M that satisfies the relations
in Γ also satisfies φ. Notice that we restrict the models to be finite. This means
that we only consider finite sets when interpreting basic terms. This is stricter than
what logicians usually mean by entailment.
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AtLeast x y holds whenever the cardinality of x is greater than or equal to the
cardinality of y. And finally, the All relation is just set containment: All x y holds
whenever the set x denotes is a subset of that for y.

As for entailment, φ follows from Γ if every finite model M that satisfies the relations
in Γ also satisfies φ. Notice that we restrict the models to be finite. This means
that we only consider finite sets when interpreting basic terms. This is stricter than
what logicians usually mean by entailment.
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Inference rules for A∩(card)

All x x
(axiom) All x y All y z

All x z
(barbara)

All x y AtLeast x y

All y x
(mix) All x y

AtLeast y x
(size) AtLeast x y AtLeast y z

AtLeast x z
(trans)

All (a ∩ b) a
(inter-l) All (a ∩ b) b

(inter-r) All a b All a c
All a (b ∩ c)

(inter-all)

7

These are the rules of inference for our logic with intersection. This turns out to be
enough for completeness! Proving completeness is a bit complicated, but most of
these rules are ones you might expect. (barbara) and (trans) just state transitivity
of subset and AtLeast. So (barbara) says: if x is contained in y, and y is contained
in z, then x must be contained in z.

We also have a few basic axioms. (axiom) states that x is always a subset of itself.
(inter-l) and (inter-r) state that an intersection a∩ b is contained within both of its
parts a and b.

The three interesting rules here are (mix), (size), and (inter-all). (mix) says that if x
is contained within y but is at least as big as y, then x and y must be the contained
within one another, so they are the same set. (This is actually the rule we used in
our example about purring cats earlier.) (size) says that if we know All x y, we can
weaken to AtLeast. That is, if x is a subset of y, then we know that y is at least as
large as x. And (inter-all) is the rule that does the most work with intersections. It
states that if a set a is contained within two other sets, then a is contained within
their intersection.
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Inference rules for A∪(card)

All x x
(axiom) All x y All y z

All x z
(barbara)

All x y AtLeast x y

All y x
(mix) All x y

AtLeast y x
(size) AtLeast x y AtLeast y z

AtLeast x z
(trans)

All a (a ∪ b)
(union-l) All b (a ∪ b)

(union-r) All a c All b c
All (a ∪ b) c

(union-all)

8

Our logic with union is very similar. The only difference are those union rules
highlighted in red. Here we have (union-all), which states that if two sets are
contained within a bigger set c, then the union of the two is also contained in c.



Main technical results

Theorem
The logic A∩(card) is complete.

Theorem
⊢ is decidable in polynomial time!

Theorem
If Γ ̸⊢ φ, then we can construct a countermodel M
satisfying Γ but falsifying φ in polynomial time

9

I mentioned before that the rules on the previous slide for our logic with intersection
are complete! In logics that have reductio ad absurdum as a rule, completeness
would be reduced to being able to construct a model of any set Γ in our logic. But
our logic does not have reductio. So in the paper, we do give a model construction,
but we also had to do a little extra work to make the proof go through.

Because of the duality between the rules with intersection and the rules with union,
the completeness of the union logic follows from the completeness of the intersection
logic.

Maybe it’s a bit surprising that these rules are complete, considering how darn
simple the rules actually are. But because our rules are so simple, we also get
polynomial-time decidability! The proof of this is completely syntactic, and so
doesn’t involve our model-building construction at all. We essentially follow an
adapted version of McAllester’s Tractablility Lemma (cited below): We have finitely
many rules, and each rule involves a finite number of terms being substituted. This
lets us polynomially bound the height of proof trees in this logic, which lets us
decide whether φ follows from Γ in polynomially many steps.

I mentioned that our proof of completeness centered around model construction. I
think you’ll appreciate how we do it: When building a model, each of the terms a, b,
c, and so on are denoted by sets. What you want to do is satisfy Γ, which prescribes
the size order that terms need to have. So what we do is: line up the intersection
terms (which includes base terms, since a is just a∩ a). Then we perform insertion
sort on them, where we “swap” two terms by giving base terms the right number of
elements. The proof is pretty cute, and since we mainly perform insertion sort we
also get polynomial-time model building!
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Additional inference rules
for M∪(card)/M∩(card)

More x y AtLeast y z

More x z
(more-l) AtLeast x y More y z

More x z
(more-r)

More x y

AtLeast x y
(more-atleast) More z z

φ (x)

[AtLeast y x]....More z z
More x y

(raa)

10

I promised that I would get to strict cardinality comparison. In our paper, we
actually do give a complete set of rules for the logic involving More. We just add
the rules on this slide to the previous rules for the intersection logic.

(more-l) and (more-r) are essentially transitivity rules for strict More. (more-atleast)
states that if we know that there are more x than y, we can weaken this to “there
are at least as many x as y. The rule (x) is how we encode the principle of explosion
in our logic – if there are strictly more things in z than in z, this is clearly a
contradiction. So as usual, we can prove anything from this. Finally, we have a
version of reductio ad absurdum, where if we assume that there are at least as many
y as x and arrive at a contradiction, then we conclude the negation: That there are
more x than y.

The problem with strict comparison is that these rules no longer enable us to decide
inference in polynomial time. The issue is this reductio ad absurdum rule. Proof
trees using the reductio rule could be any height whatsoever, and so we can’t poly-
nomially bound the number of steps this inference would take. We’ve been thinking
of possible alternative rules that can replace reductio, and if you’re interested I can
show you one of these at my poster later this evening.
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Integration with theorem provers

11

Our logic is efficient, and so it would be nice to embed our logic in a theorem prover
to get some speedup on this fragment of reasoning. I mentioned that Philippe Suter
has extended Z3 to reason via BAPA, and so this plugin is a prime candidate to
try. I’m not as familiar with building theorem provers, so I would love to talk to
any of you that are interested.
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I’m gonna conclude with this map, which shows exactly where A∩(card) lies in the
scheme of things. You can see A∩(card) up there in red. At the top is Boolean
Algebra with Presburger Arithmetic (well, without quantifiers), which probably
some of you know. BAPA is much more expressive than our logic – it can perform
inferences on a wide variety of both set and numerical terms, along with a cardinality
map and propositional connectives ∧, ∨, ¬. But remember that I began the talk with
the fact that its inference is intractible. Actually, just the quantifier-free fragment
of BAPA is NP-complete!

If we go a little less expressive, we land on this very recent Logic of Comparative
Cardinality CardCompLogic. The full CardCompLogic has predicates for stating that
a set is finite or infinite, but if we restrict their sets to be finite, we end up with
a sublogic of QFBAPA. The jury is still out on the complexity of CardCompLogic,
but with intersection, complement, and propositional connectives (so many ways to
encode SAT!), I doubt that it has polynomial-time inference.

Another cousin of our logic is this syllogistic logic “S dagger card”. This logic uses
additional relations for strict cardinality comparison and Aristotle’s “Some x are
y”, along with set complement rather than set intersection. This system manages
to be polynomial-time decidable. We strongly suspect that if we were to have both
set complement and set intersection, we would end up begin able to reduce the logic
into SAT.

For reference, propositional logic (the one you all know, with ∧, ∨, and ¬) is up
there, contained within CardCompLogic. Most of you know that propositional logic
is NP-complete (it’s just Bool-SAT).
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P: Propositional logic

Logic of Comparative Cardinality
(restricted to finite models)

Boolean Algebra with
Presburger Arithmetic

Lawrence S. Moss. “Syllogistic logic with cardinality comparisons”. In: J. Michael Dunn on information based
logics. Vol. 8. Outst. Contrib. Log. Springer, 2016, pp. 391–415. doi: 10.1007/978-3-319-29300-4_18. url:
https://doi.org/10.1007/978-3-319-29300-4_18 12

I’m gonna conclude with this map, which shows exactly where A∩(card) lies in the
scheme of things. You can see A∩(card) up there in red. At the top is Boolean
Algebra with Presburger Arithmetic (well, without quantifiers), which probably
some of you know. BAPA is much more expressive than our logic – it can perform
inferences on a wide variety of both set and numerical terms, along with a cardinality
map and propositional connectives ∧, ∨, ¬. But remember that I began the talk with
the fact that its inference is intractible. Actually, just the quantifier-free fragment
of BAPA is NP-complete!

If we go a little less expressive, we land on this very recent Logic of Comparative
Cardinality CardCompLogic. The full CardCompLogic has predicates for stating that
a set is finite or infinite, but if we restrict their sets to be finite, we end up with
a sublogic of QFBAPA. The jury is still out on the complexity of CardCompLogic,
but with intersection, complement, and propositional connectives (so many ways to
encode SAT!), I doubt that it has polynomial-time inference.

Another cousin of our logic is this syllogistic logic “S dagger card”. This logic uses
additional relations for strict cardinality comparison and Aristotle’s “Some x are
y”, along with set complement rather than set intersection. This system manages
to be polynomial-time decidable. We strongly suspect that if we were to have both
set complement and set intersection, we would end up begin able to reduce the logic
into SAT.

For reference, propositional logic (the one you all know, with ∧, ∨, and ¬) is up
there, contained within CardCompLogic. Most of you know that propositional logic
is NP-complete (it’s just Bool-SAT).

https://doi.org/10.1007/978-3-319-29300-4_18
https://doi.org/10.1007/978-3-319-29300-4_18


The map

P-Time

NP-Time

A

A(card)

A∩(card)

S†(card)
P

CardCompLogicfin

QFBAPA

A: a ⊆ b

A(card): a ⊆ b + |a| ≥ |b|

A∩(card): A(card) + ∩

S†(card): A(card) + |a| > |b|
+ Some + ā
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We’re very interested in how much you can add to A∩(card) while staying below
the polytime line. We would love to get polynomial time with More. There is also
the possibility that we would stay below if we integrate both union and intersection
together. Another fun direction is to explore what kind of reasoning is polynomial
time, but below propositional.
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