Logics for Sizes with Union or Intersection Caleb Kisby, Saúl A. Blanco, Alex Kruckman, Lawrence S. Moss

What Kind of Inference?

All cats are mammals that purr There are at least as many cats as purring things All purring things are cats

> All hippies can vote All hippies are vegetarian All people can vote There are at least as many people as things that can vote

Semantics

 $\llbracket a \rrbracket \subseteq M$ $\llbracket a \cap b \rrbracket = \llbracket a \rrbracket \cap \llbracket b \rrbracket$ $\mathcal{M} \models \mathsf{AtLeast} \ x \ y \ \mathrm{iff} \ |\llbracket x \rrbracket| \ge |\llbracket y \rrbracket|$ $\mathcal{M} \models \mathsf{All} \ x \ y \ \mathrm{iff} \ \llbracket x \rrbracket \subseteq \llbracket y \rrbracket$

 $\Gamma\models\varphi$

Main Technical Results

Theorem. The logics $\mathcal{A}^{\cap}(card)$ and $\mathcal{A}^{\cup}(card)$ are complete.

Theorem.⊢ *is decidable in polynomial time!*

Theorem. If $\Gamma \not\vdash \varphi$, then we can construct a finite countermodel \mathcal{M} satisfying Γ but falsifying φ in polynomial time

The Map

$$\frac{\text{All } x \ x}{\text{All } x \ x} \stackrel{(\text{AXIOM})}{\text{All } x \ z} \stackrel{\text{All } x \ y}{\text{All } x \ z} \stackrel{(\text{BARBARA})}{(\text{BARBARA})}$$

$$\frac{\text{All } x \ y}{\text{All } y \ x} \stackrel{\text{AtLeast } x \ y}{\text{AtLeast } x \ y} \stackrel{\text{AtLeast } x \ y}{\text{AtLeast } x \ z} \stackrel{(\text{TRANS})}{(\text{TRANS})}$$

$$\frac{\text{All } x \ y}{\text{AtLeast } x \ z} \stackrel{(\text{MIX})}{(\text{INTER-L})} \stackrel{\text{All } x \ y}{\text{AtLeast } y \ x} \stackrel{(\text{SIZE})}{(\text{SIZE})} \stackrel{\text{AtLeast } x \ y}{\text{AtLeast } x \ z} \stackrel{(\text{TRANS})}{(\text{INTER-ALL})}$$

$$\frac{\text{All } a \ (a \cup b) \ (\text{INTER-L})}{\text{All } (a \cap b) \ b} \stackrel{(\text{INTER-R})}{(\text{INTER-R})} \stackrel{\text{All } a \ b}{\text{All } a \ (b \cap c)} \stackrel{(\text{INTER-ALL})}{(\text{INTER-ALL})}$$

$$\frac{\text{All } a \ (a \cup b) \ (\text{UNION-L})}{\text{All } b \ (a \cup b)} \stackrel{(\text{UNION-R})}{(\text{UNION-R})} \stackrel{\text{All } a \ c}{\text{All } a \ (b \cap c)} \stackrel{(\text{UNION-ALL})}{(\text{UNION-ALL})}$$

$$\frac{\text{More } x \ y}{\text{More } x \ z} \stackrel{(\text{MORE-L})}{(\text{MORE-L})} \stackrel{\text{AtLeast } x \ y}{\text{More } x \ z} \stackrel{(\text{MORE-R})}{(\text{MORE-R})}$$

$$\frac{\text{AtLeast } y \ x]}{\text{AtLeast } x \ y} \stackrel{(\text{MORE-ATLEAST})}{(\text{MORE-ATLEAST})} \stackrel{\text{More } z \ z}{(\text{Y})} \stackrel{(\text{More } z \ z}{(\text{MORE} x \ y)} \stackrel{(\text{RAA})}{(\text{MORE} x \ y)}$$

Future Work Polynomial Time with 'More' $\frac{A \parallel x \ a \ A \parallel x \ b \ More \ (a \cup b) \ b}{More \ a \ x}$ Adding 'Some' $\frac{More \ a \ b \ At Least \ c \ d \ At Least \ (b \cup d) \ (a \cup c)}{Some \ a \ c}$ Integrating with Z3 Plugin • Our logic may best be viewed as an efficient fragment of (QF)BAPA • Consequently, we keep an eye towards embedding $\mathcal{A}^{\cap}(card)$ in an SMT solver • Ideal candidate is Z3 plugin [6] for BAPA

References

[1] Yifeng Ding et al. "The Logic of Comparative Cardinality". 2018. [4] Lawrence S. Moss. "Syllogistic logic with cardinality comparisons". 2016.

[2] Viktor Kuncak and Martin Rinard. "Towards efficient satisfiability checking for boolean algebra with Pres- [5] Ian Pratt-Hartmann. "On the Computational Complexity of the Numerically Definite Syllogistic and Related Logics". 2007.

[3] Viktor Kuncak et al. "Deciding Boolean algebra with Presburger arithmetic". 2006.

[6] Philippe Suter et al. "Sets with Cardinality Constraints in Satisfiability Modulo Theories". 2011.