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Abstract. Determining when to trust black box systems is a well-known
challenge. An important factor affecting users’ trust is confidence in sys-
tem solutions. Previous case-based reasoning (CBR) research has devel-
oped criteria for assigning confidence to the solutions of a CBR system.
This paper investigates whether such analysis, coupled with factors such
as CBR system competence, can be used to predict confidence in the
outputs of a black box system, when the black box and CBR systems
are provided with the same training data. The paper presents initial
strategies for using CBR confidence to predict black box system con-
fidence. An evaluation explores the ability of the strategies to provide
useful information and suggests future questions.
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1 Introduction

Advances in machine learning, and in particular in deep networks, have led
to widespread applications of AI systems with powerful performance achieved
through methods that are largely opaque to their human users. Such systems,
often referred to as black box systems, accept an input and propose an out-
put without an account of how the output was generated. This can be especially
troubling when the black box systems, despite overall strong performance, some-
times perform unexpectedly. For example, it is well known that deep networks
may exhibit unexpected behaviors on adversarial examples; two images that a
human sees as identical may receive different classifications [20,29]. Such behav-
ior and the inability to explain the performance of black box systems has been
widely acknowledged as a concern for confidence in their conclusions, which can
limit the domains to which they are applied. This in turn has led to an outpour-
ing of research on explainable AI (e.g., [2]), including in the context of case-based
reasoning [1].

Explanation of black box systems has a long history of combining the black
box systems with more interpretable methods. For example, one approach is
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to use interpretable ML methods, such as decision trees, to build a model of
the black box system reasoning that can then be used to explain predictions.
However, as rules become more complex they become less interpretable, and
it may be difficult to capture the black box system’s behavior with sufficient
fidelity (e.g., [10]). From the early days of case-based reasoning, the ability to
explain CBR system reasoning by reference to prior cases has been seen as an
important benefit [15]. This makes it appealing to combine case-based reasoning
with black box systems, to increase explainability of black box system behavior.
For example, Shin et al. [27] propose a CBR/neural network hybrid in which
neural-network-generated features are used to retrieve relevant cases, with the
goal of explainability. Nugent and Cunningham propose a general framework for
case-based explanation of behavior of black box systems [22]. In their approach
an artificial case base, seeded with cases generated by the black box system, is
used to determine local feature salience, which is used in turn to guide retrieval
of real cases as the basis for explanations to increase user confidence in black box
system conclusions. Keane and Kenny provide an extensive survey of research
on “twinning” CBR and neural network systems to provide explanations [14].

This paper brings together CBR and black box systems in a different way,
for a task complementary to the explanation task per se: to assess confidence in
black box solutions. In the presented approach, COBB (Case-based cOnfidence
for Black Box), both the CBR system and black box system have access to the
same training data (or subsets of each other’s data); each functions in parallel.
However, the goal of the CBR system processing is not to provide the solution,
but instead, to ascribe confidence to the black box system output. That con-
fidence judgment can be directly provided to a user, as a unitary confidence
judgment, and the confidence (not the solution itself) can explained in terms
of characteristics derived from the CBR system. Thus in contrast with, e.g.,
Nugent and Cunningham: The role of the CBR system is not to replicate the
black box system performance, but to provide an independent view, based on the
same data, as a “second opinion” based on a more intelligible process that can
be examined to assess its conclusions. The confidence information can then be
used, for example, to decide when to expend scarce resources on evaluating solu-
tions (e.g., in a financial system, presenting the problem to a human expert, or
presenting the case retrieved by COBB as the basis of independent assessment).

An important question for such paired systems is how much their value
depends on the relative performance of the CBR and black box systems. The
primary use case for the COBB approach is situations in which in general, black
box system solutions have higher confidence. Were that not the case, the CBR
system, not the black box, should be the primary reasoning system. We discuss
this question in more detail in Sect. 6.1.

Given that the CBR system and black box system are independent, with
the CBR system potentially having lower accuracy, a natural question is the
extent to which the CBR system can ascribe confidence to the black box system
results. The answer is twofold. First, for assessing confidence, independence of
the two systems can be a benefit to give a true second opinion. On the other
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hand, a premise of the approach is that the world basically conforms to the
CBR hypothesis that “similar problems have similar solutions,” so black box
system behavior that conflicts with that premise—as manifested by the CBR
system—should be ascribed lower confidence.

This paper proposes and evaluates three potential methods for predicting
confidence of a black box system based on a CBR system. The first method pro-
posed is based on a näıve analysis of the relationship between CBR confidence,
black box confidence, and the distance between the two solutions. The second
method combines several predictors in order to determine the confidence in the
black box solution. The third method builds on the extensive work of Cheetham
on CBR confidence by applying his confidence indicators approach to the black
box system outputs.

Experimental results show that the method with the best overall quality was
the second method. It generally had better overall quality than the other two,
and for large testing sets had very good quality. The paper closes with directions
for extending this work.

2 Previous Work

CBR Confidence Models: In seminal work, Cheetham proposed the development
of confidence models for case based reasoning. His goal was twofold: to provide
information to help predict whether a solution had low error, and to determine
whether the output of the CBR system should be used for a given task. His
approach [5,7] explores incorporating a measure of quantitative values for confi-
dence and an error factor into each score. Reilly et al. [26] developed an explicit
model of confidence for case-based conversational recommender systems.

Neural Network Confidence Models: Previous work has explored using confi-
dence intervals to determine prediction intervals for Neural Networks (e.g., [4]).
We note, however, that use of confidence intervals is different from determining
the confidence in a system in the sense pursued by Cheetham. Confidence inter-
vals “are enclosed in prediction intervals and are concerned with the accuracy
of our estimates” [4], whereas confidence in Cheetham’s (and our) sense is “the
degree of belief in the correctness of the result of a CBR system” [7]. Additional
approaches for confidence measures of neural networks with confidence inter-
vals have emphasized the use of maximum likelihood error [24] and confidence
intervals in classifier models [30].

CBR Integrations: There is a long history of CBR integrations with other types
of systems [18], including for black box systems such as neural networks, in
which the two systems contribute jointly to problem-solving. For example, in the
medical domain to classify skin lesions, a convolutional neural network was used
to get features, where those features were passed into the CBR to get retrieved
case and output [21]. The proposed integration differs, however, in that the goal
is for CBR to contribute to assessment of the other system rather than to the
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problem-solving process itself. This work is an instance of twinning of CBR and
black box systems, such as ANNs [14].

3 Black Box Confidence

3.1 The Notion of Confidence of a Black Box System

Developing an approach to assessing black box system confidence by CBR
depends first on understanding what “confidence” should represent. The term
confidence has been used in CBR to refer to the “degree of belief” that the
CBR system’s solution is correct [5]. This is a fuzzy notion for which values in
the range [0, 1] indicate “percentage belief” in the CBR solution. We distinguish
this notion from that of trust; confidence is a technical property of our system,
whereas trust is a psychological property of humans using a system [17]. This
notion of confidence is well understood for CBR systems [7], and can augment
the assessments that could be done by examining the CBR system’s internal
process of retrievals and adaptation.

Black box systems are widely used, with applications for high-stake scenarios.
Unfortunately, it is impossible to examine the internals of a black box system in
order for a user to develop a level of trust in it (by definition). Thus it would be
useful to be able to evaluate a level of confidence in a black box’s solution to a
problem.

A simple first approach for black box confidence would be to use a global
measure of the black box system’s performance, such as its accuracy, to ascribe
a level of confidence in the system’s solutions. This approach is not satisfactory,
however, because the global accuracy provides no per-case information. Based
on it, equal confidence would be ascribed to all solutions—which would provide
no guidance on which solutions to verify or perhaps reject.

Given the ability to ascribe confidence to CBR solutions, it is appealing to
use confidence in a CBR system to assist with determining confidence in the
black box. We can twin a CBR system with our black box, training the two on
the same set of training cases, for each to provide solutions to each problem.
To account for differences in system characteristics, the confidence in the CBR
system’s solution can then be combined with information from other properties
of the CBR and black box systems in order to calculate the confidence in the
black box’s solution.

In the following sections, we discuss potential predictors for black box confi-
dence. Using these predictors, we present three methods for determining confi-
dence in a black box system’s solution.

3.2 Distance from CBR System Solution

A simple indicator for confidence in a black box solution is the distance of that
solution to the solution provided by the CBR system itself. We assume that
the solution space has some distance metric normalized to the interval [0, 1].
Applying this involves complexities discussed in Sect. 3.6.
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3.3 CBR Confidence

As mentioned previously, confidence in a CBR system’s solution is well under-
stood. We follow Cheetham’s approach for calculating the CBR confidence [5–
7]. His method involves constructing fuzzy preference functions which map the
CBR system’s solutions to confidence in those solutions. His approach first sets
a confidence scale mapping intervals of error in the CBR solution to confidence
intervals. We use his scale, where the Fuzzy Linguistic Term good has a con-
fidence interval of 1–0.75 and an error of less than 5%, the term questionable
has a confidence interval of 0.75–0.5 and an error between 5% and 10%, and
the term poor has a confidence interval 0.5–0.0 and an error greater than 10%.
(Here, “confidence interval” refers to the range of values our “fuzzy” confidence
can have. This is distinct from the statistical notion of “confidence interval”).

The next step is to pick a few statistical indicators of confidence [6]. We
select the following indicators (Cheetham proposes both positive and negative
indicators, but we consider only positive):

– Similarity between the given problem case and the most similar retrieved case
with the best solution

– Sum of all the similarity scores between the problem case and the k -closest
retrieved cases with the best solution

– Number of cases with the best solution out of the k closest retrieved cases
– Percentage of the k closest retrieved cases that have the best solution
– Average similarity score between the problem case and the k closest cases

with the best solution

As suggested by Cheetham, we then use the C4.5 algorithm to construct
a decision tree for predicting whether a solution will be correct, based on the
values of the indicators. We select the indicators highest in the tree as the most
important indicators. The goal is to choose the indicators best at predicting a
correct CBR solution, because “the more likely the solution is to be correct the
higher our confidence should be” [6].

For each selected indicator, we construct a fuzzy preference function mapping
that indicator value to confidence in the CBR system’s solution. To do this, we
treat each case in the training set as a test case (temporarily removing each
in turn from the case base). For each training case, we calculate the value of
the indicator and the error in the CBR system’s proposed solution. Similarly
to Cheetham, we plot the indicator values against the error, and fit a cubic
regression to the resulting plot using NumPy [23]. We then construct a piecewise
linear function from this regression by obtaining the straight lines that meet at
the extrema and inflection points.

We next compose the piecewise function (mapping indicator values to error)
with the confidence scale (mapping error to confidence) to construct the fuzzy
preference function (mapping indicator values to confidence). The details are
spelled out by Cheetham in [5], and involve identifying key indicator values at
which we are in a different error interval, and hence in a different confidence
interval.
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We then can determine the confidence in a CBR solution by calculating the
selected indicators for a particular solution, for each fuzzy preference function,
taking the confidence value for the value of its respective indicator, and taking
the mean of these confidences as the final confidence value.

3.4 CBR Competence

The CBR system’s competence, the “the range of target problems that a given
system can solve” [28], may be another predictor of black box confidence. If
the training data is insufficient for CBR coverage of the problem space, it is
plausible that it could be insufficient for the black box as well. We follow Smyth
and McKenna’s model of CBR competence in which the competence of a CBR
system depends on the density and distribution of cases in the case base and the
strength of the CBR system’s retrieval and adaptation.

3.5 Black Box Accuracy

We also expect higher confidence in the black box when the black box itself
globally performs well. As a global measure of our black box’s performance
we use its accuracy, i.e. the percent of its own training cases for which the
fully-trained black box can successfully provide a solution (within an acceptable
threshold). This can be estimated, for example, by leave-one-out testing.

3.6 Proposed Methods for Estimating Black Box Confidence

Given the predictors for black box confidence (black box accuracy, CBR compe-
tence, confidence in the CBR solution, and distance between the CBR solution
and black box solution), we propose three ways to combine them to determine
confidence in the black box solution. As emphasized before, each method pro-
duces a fuzzy confidence value within [0, 1] which represents the degree of belief
that the black box’s solution is correct.

Näıve Method: Our first approach is based on the insight that if we are very con-
fident in the CBR system’s solution and the distance between the two solutions
is small, we should also be very confident in the black box system’s solution.
Similarly, when we are very confident in the CBR system’s solution and the
distance between the two solutions is large, we should doubt the black box’s
solution. When we doubt the CBR system’s solution and the distance between
the two solutions is small, we expect again to doubt the black box’s solution.
Following this reasoning, we might infer that the confidence of the black box’s
solution is given by a formula such as:

confBB = |confCBR − distance| (1)

That is, confidence in the black box’s solution is the distance between CBR
confidence and solution distance, both scaled to [0, 1].
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However, there is a problem with this confidence formulation: If we have low
confidence in the CBR system and there is a large distance between the two
solutions, this method predicts that we will have high confidence in the black
box. This is not necessarily the case, because the distant black box solution
could still easily be far from the actual solution. In addition, this formula does
not make use of the black box accuracy or CBR competence, both of which
should affect the confidence in our black box’s solution. Because of these issues,
we do not expect this method to predict black box confidence well, but we will
test it as a simple baseline.

Cheetham’s Fuzzy Preference Method: This method provides the most natural
extension of CBR confidence to black box confidence. We can simply apply
Cheetham’s method for determining confidence in a CBR solution to the black
box’s solution. We use the same confidence scale as for our CBR confidence.
For our indicators of black box confidence, we pick the confidence in the CBR
system’s solution for the same problem and the distance between the black box
and CBR solutions. We again construct fuzzy preference functions mapping these
indicators to black box confidence (using the training set), and then average the
outputs of these fuzzy preference functions for a given black box solution.

Note that we cannot use accuracy or competence as indicators here, because
Cheetham’s method requires that indicator values vary per problem case
(whereas accuracy and competence are system-global properties). So, like the
Näıve Method, this method also does not make use of the black box accuracy or
the CBR competence. Rejecting accuracy and competence as indicators on their
own is also justified pragmatically by the fact that they provide no comparative
information: They give no indication of which solutions might require further
verification.

Weighted Average Method: Unlike the previous two methods, this approach
attempts to make use of all of our confidence predictors. Each of our predic-
tors is on the same interval [0, 1], and we can propose a weighted average:

confBB =
w1 × (1− distance) + w2 × confCBR + w3 × compCBR + w4 × accBB

w1 + w2 + w3 + w4
(2)

where distance is the distance between the two solutions, confCBR is our con-
fidence in the CBR solution, compCBR is our CBR competence, and accBB is
our black box accuracy. Note that we use 1 − distance because the relation-
ship between the CBR and black box confidences strengthens as the distance
decreases.

For any domain, weights may be set by hill climbing (see Sect. 4). For con-
creteness, in our evaluation, hill climbing resulted in the following weights, which
define what we henceforth refer to as the Weighted Average method:

w1 = 3.0 (for 1 − distance)
w2 = 0.25 (for confCBR)
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w3 = 1.5 (for compCBR)
w4 = 3.0 (for accBB)

Although the w2 value is comparatively small, its inclusion as a nonzero value
improves overall performance, showing that confCBR provides useful informa-
tion.

4 Evaluating Methods for Black Box Confidence

4.1 Assessing Quality of Confidence Predictions

In order to evaluate how well the proposed methods predict black box confidence,
we propose a measure of confidence function quality. This measure is founded
on the principle that ideally, confidence should be high if and only if error in the
black box solution is low. Hence, a method for determining black box confidence
is “good” if it assigns high confidence whenever there is low error in the solution,
and low confidence whenever there is high error in the solution. We propose that
the quality of a black box confidence predictor is the degree to which the black box
confidence prediction decreases monotonically with black box system error. We
consider the ability of the measure to properly rank cases by confidence as more
important than the particular score it assigns, which could be normalized or
scaled to fit domain expectations. The primary goal is to be able to assess which
solutions should be ascribed more confidence than others, to identify those which
might deserve more scrutiny. Spearman’s rank correlation coefficient provides a
method to assess the ability of the measure to properly order solutions, i.e., to
determine the correlation of the measure’s assessment with the actual ordering
by accuracy [9].

We evaluate the quality of a confidence method as follows. First, we use it
to compute the confidence in the black box solution for each problem in the
testing set, and also determine the error in the black box system’s solution for
each problem in the testing set. We then rank the test problems from lowest
confidence to highest confidence and rank the problems again from highest error
to lowest error. We then computes the Spearman correlation coefficient ρ for
these rankings.

A ρ value of 1 implies that, for that confidence method, black box confidence
increases monotonically with reverse-ranked error. That is, black box confidence
decreases monotonically with error. Similarly, a ρ value of −1 implies that black
box confidence increases monotonically with error. We interpret the strength of
this correlation using the table suggested by Akoglu [3] for Spearman coefficients.
Using this table, one may say that the confidence method is “good” whenever
we have a ρ value that corresponds to a strong correlation.

4.2 Experimental Questions

Given our measure of black box confidence quality, we can begin to experi-
mentally evaluate the methods for black box confidence prediction. Three key
questions are:
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1. How effectively do the methods predict confidence in the black box system’s
solution? How do they compare with baselines of using CBR confidence alone
or random confidence assignment?

2. Are the methods able to ascribe confidence successfully even when the black
box’s accuracy is very low?

3. When the black box outperforms the CBR (as is likely to be the case if the
black box system is used instead of relying on CBR alone), is CBR confidence
a better or worse predictor of black box confidence?

We perform an evaluation addressing questions 1 and 2 in this paper. We do
not answer question 3, but we include a discussion of how this could be done in
Sect. 6.1.

The first two questions directly deal with the quality of our black box con-
fidence methods. In order to evaluate Question 1, we first establish baseline
methods against which to compare. The baselines are:

– CBR Confidence: This baseline simply returns the confidence in the CBR
system’s solution in lieu of confidence in the black box.

– Random Confidence: This baseline returns a randomly generated confidence
value on the interval [0, 1].

5 Testing Confidence Methods with COBB

5.1 Overview of COBB System Design

Our testbed system, COBB (Case-based cOnfidence for Black Box), pairs a CBR
system and a black box system to predict confidence in the black box system
using the methods outlined in Sect. 3.6.

Our particular CBR system is a simple domain-independent retrieval system;
it returns the closest case as a solution, with no adaptation. Feature weights
were determined by hand, with no attempt to fine-tune weight values. A case is
considered to solve a problem c if its solution is within a certain threshold of the
solution for c (this threshold is used in competence calculations).

Our black box system is a multi-layer perceptron regressor provided by the
SciPy ‘scikit-learn’ package [13,25]. In order to handle non-numerical attribute
values during training, any non-numerical value from a training case is converted
using one-hot encoding. If a non-numerical value is encountered during testing
that was not seen in the training set, our one-hot encoding codes it as a sequence
of zeroes. The COBB system does not rely on any particular properties of this
regressor, so is fully general for other black box systems.

5.2 Test Domains

We test COBB with four regression datasets from the UCI Machine Learning
Repository [11]: Computer Hardware (7 numerical attributes, 2 text attributes,
209 total cases), Student Portuguese Performance (SPP) [8] (16 numerical



104 L. Gates et al.

attributes, 17 text attributes, 649 total cases), Airfoil (5 numerical attributes,
0 text attributes, 1503 total cases), and SML (23 numerical attributes, 2
text attributes, 4137 total cases). For each domain, we perform 10-fold cross-
validation on the domain dataset. For each fold, we train both the CBR and the
black box on that fold.

To these domains we apply black box systems of varying accuracies, ranging
from very high to very low. The average accuracy (across 10-fold cross-validation)
of each black box’s domain is as follows: Computer Hardware at 23.7%, SPP at
97.6%, Airfoil as 9.4%, and SML at 70.2%. We treat the Computer Hardware and
Airfoil domains as examples for which black box accuracy is low, and similarly
the SPP and SML domains as examples for which accuracy is high.

5.3 Results for Quality of Confidence Methods

For each domain and each confidence method, we compute the Spearman corre-
lation function1 to obtain the ρ value per fold. We then take the mean of the ρ
values across the folds, and calculate a 95% confidence interval for the mean of
the ρ values.

Figure 1 shows the mean Spearman ρ values (across 10-fold cross-validation)
along with their confidence intervals for each of our domains.2 We also include the
mean Spearman ρ values and confidence intervals for our two baseline methods,
CBR confidence in lieu of black box confidence and random confidence.

To assess the results, first, we compare our confidence methods to the base-
lines. As shown, the Näıve Method has positive correlation but low quality on
the Computer Hardware and SPP domains. The Fuzzy preference method, on
the other hand, has higher quality than the base methods on the Airfoil and
SPP domains. The Weighted Average method performed consistently well across
domains, maintaining a higher quality than both CBR Confidence and Random
Confidence. Interestingly, in the SML domain all three methods have higher
quality than Random Confidence, but match the quality of just using CBR con-
fidence.

Next, we compare the quality of the confidence methods with each other.
For the Computer Hardware and SPP domains, the weighted average method
outperforms the Näıve and Fuzzy Preference confidence methods. Within the
Airfoil domain, on the other hand, the Weighted Average and Fuzzy Preference
confidence methods have roughly the same quality, and this quality is far higher
than that for the Näıve method. Surprisingly, in the SML domain all three
methods have roughly the same quality.

For the SML domain, the mean ρ values for all three methods are in the
“very strong” range (using [3]). In addition, this domain is the only one in which
CBR Confidence (on its own) has very strong quality. In the Airfoil domain, only
the Weighted Average and Fuzzy Preference methods have mean ρ values in the
“very strong” range, whereas the Näıve method has weak negative correlation.

1 Using SciPy [13].
2 Plotted using the Matplotlib package [12]).
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(a) Domain Computer Hardware (b) Domain SPP

(c) Domain Airfoil (d) Domain SML

Fig. 1. Spearman ρ values for each confidence method, for each domain.

For the other two domains, we obtain mean ρ values in the weak and moderate
range for all three confidence methods. We suspect that this discrepancy is due
to how well the black box and CBR systems are paired for each domain, but
future work is needed to evaluate this.

6 Discussion

6.1 Answering the Experimental Questions

The previous results suggest preliminary answers to questions 1 and 2 from
Sect. 4.2.

Question 1 asks how successfully the three methods predict confidence in the
black box solution. The experiments suggest that the Weighted Average method
and Fuzzy preference method can give high quality predictions. Compared to
the baselines of CBR confidence or random assignment, the Weighted Average
method has consistently higher quality, whereas the Fuzzy Preference method
only has higher quality in certain domains. The Näıve method has poor quality
across our domains and fails to compete with the Weighted Average method in
any domain except SML.
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Question 2 asks whether the confidence methods can still have high quality
even when the black box system has low accuracy. As mentioned in Sect. 5.2,
the Airfoil domain black box system has very poor accuracy. The Weighted
Average and Fuzzy Preference methods give good results in the Airfoil domain
despite low black box accuracy.

Question 3 asks whether the CBR confidence has better or worse quality (as a
black box confidence method) when the black box outperforms the CBR system.
Answering this question requires considering instances in which CBR accuracy is
low and black box accuracy is high. Tests on the current datasets did not produce
any such situations. We intend to address this and further analyze results for
the prior questions using additional datasets in future work.

6.2 Reflecting on Assumptions Made in COBB

An initial hypothesis for this paper was that CBR confidence could be a good
predictor of black box confidence. Surprisingly, in our experiments, CBR con-
fidence by itself had almost no monotonic correlation with error, except in the
SML domain. However, when combined with other predictors (as in the Weighted
Average method), CBR confidence is a useful predictor. So we must revise the
initial hypothesis: The individual indicators combined provide a good prediction
of black box confidence.

We previously mentioned the potential problem of the Näıve method that
it does not apply when our confidence in the CBR is low and there is a large
distance between the two solutions. Because the quality of our Näıve method
is consistently low across all domains except SML, we conclude that the Näıve
method is not a useful approach.

7 Explaining Confidence with COBB

The confidence judgments of COBB can be treated as standalone confidence
judgments to aid a user determining trust in black box system conclusions, in
the tradition of the confidence literature. However, the information developed
by COBB can also be used to provide users with useful explanations of the
confidence judgment, in two ways:

– Direct explanation from cases: When COBB retrieves a case for a similar
problem, and low confidence suggests that additional scrutiny is needed, that
case may be presented to the user either as substantiation (if its solution
is in agreement) or as a conflict for the user to examine. Depending on the
domain, presentation of the case could be paired with traditional information
sources in explainable CBR to help the user assess the proposed conflicting
solution (e.g., visualizations of attributes [19]). Bracketing cases, the most
similar cases with and without the same solution [16], could be presented as
well. The key added benefit from COBB compared to normal presentation of
a retrieved case is that the user’s attention need only be drawn to problems
likely to be worthy of scrutiny.
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– Explanations based on confidence indicators: The values for the specific con-
fidence indicators from Sect. 3.3 can be presented to the user as additional
data for assessing the overall confidence judgment.

8 Conclusion

We have proposed three methods for determining the confidence of a black box
system using a paired CBR system. These methods make use of various pre-
dictors of black box confidence (i.e. distance between systems’ solutions, CBR
confidence, CBR competence, and black box accuracy).

We have also provided a test for quality of a black box confidence method.
Applying this test to COBB, the black box confidence method with the best
quality in general was the Weighted Average method. In certain domains, the
Fuzzy Preference method has nearly as high quality as the Weighted Average
method. As expected, the Näıve method has low quality in almost all domains
(although in one domain it performs just as well as the former methods). We also
noted that there is one domain in which both the Weighted Average and Fuzzy
Preference methods are high-quality confidence methods, despite poor black box
accuracy.

We see multiple future steps. In addition to performing evaluations on addi-
tional domains, we intend to incorporate both negative and positive indicators
into the CBR confidence calculation. Some neural network systems output a
value characterizing strength of a prediction; the quality of this self-assessment
could be compared with that of the methods here, and could also be used as an
additional input to the calculations of the weighted method. A more substantial
extension would involve systematic study of the methods applied to different
CBR and black box systems with varying competences and accuracies. This
would enable experimentally answering questions such as Question 4.2. A fun-
damental question is how closely paired the CBR and black box systems must be
for the approach to be useful. For practical application, we intend to explore the
feasibility of using an initial calibration phase to determine domain suitability
for the COBB approach.

COBB can explain its confidence assessment in terms of confidence indica-
tors, as well as presenting cases for user examination when the CBR confidence
assessor detects potential problems. A future topic is analyzing the value of
explanations aimed directly at confidence.

The COBB approach was envisioned for situations in which a black box
system is more accurate, motivating its use as the primary system but also raising
the need for confidence assessment and explanation. An interesting question is
whether, when the CBR system is more accurate, the black box system could
help in assessing the CBR system confidence. The COBB approach could also be
applied to two CBR systems that are independent (e.g., due to different similarity
metrics) in parallel, with each assessing confidence in the other, explaining its
confidence assessment, and presenting both conclusions to the user or to be
combined in an overarching system. This could provide the basis for an approach
to system- or user-mediated ensemble reasoning in CBR.
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