
What Do Hebbian Learners Learn?
Reduction Axioms for Iterated Hebbian Learning

Caleb Schultz Kisby1, Saúl A. Blanco1, Lawrence S. Moss2
1Department of Computer Science, Indiana University

2Department of Mathematics, Indiana University
Bloomington, IN 47408, USA

{cckisby, sblancor, lmoss}@indiana.edu

Abstract

This paper is a contribution to neural network semantics, a
foundational framework for neuro-symbolic AI. The key in-
sight of this theory is that logical operators can be mapped to
operators on neural network states. In this paper, we do this
for a neural network learning operator. We map a dynamic
operator [φ] to iterated Hebbian learning, a simple learning
policy that updates a neural network by repeatedly applying
Hebb’s learning rule until the net reaches a fixed-point. Our
main result is that we can “translate away” [φ]-formulas via
reduction axioms. This means that completeness for the logic
of iterated Hebbian learning follows from completeness of the
base logic. These reduction axioms also provide (1) a human-
interpretable description of iterated Hebbian learning as a kind
of plausibility upgrade, and (2) an approach to building neural
networks with guarantees on what they can learn.

1 Introduction
The two dominant paradigms of AI, connectionist neural
networks and symbolic systems, have long seemed irrecon-
cilable. Symbolic systems are well-suited for giving explicit
inferences in a human-interpretable language, but are brit-
tle and fail to adapt to new situations. On the other hand,
neural networks are flexible and excel at learning from un-
structured data, but are considered black-boxes due to how
difficult it is to interpret their reasoning. In response to this
dichotomy, the field of neuro-symbolic AI has emerged —
a community-wide effort to integrate neural and symbolic
systems, while retaining the advantages of both. Despite the
many different proposals for neuro-symbolic AI (too many to
list! See (Bader and Hitzler 2005; Besold et al. 2017; Sarker
et al. 2022)), there is little agreement on what the interface
between the two ought to be. There is a clear need for a uni-
fying theory that can explain the relationship between neural
networks and symbolic systems (Harmelen 2022).

In fact, there is an up-and-coming foundational theory for
neuro-symbolic systems, which we call neural network se-
mantics. Its key insight is that neural networks can be taken
as models for a formal logic. Moreover, logical operators can
be mapped to operators on neural network states. Alterna-
tively, we can semantically encode classical model operators
into neural operators (and vice-versa).

Copyright © 2024, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

The central questions this theory aims to answer are:
Soundness. What axioms are sound for neural network oper-

ators? Can neural operators be mapped to classical ones in
a sound way? Note that checking soundness is equivalent
to formally verifying properties of nets.

Completeness. What are the complete axioms for neural
network operators? This is equivalent to model building:
Can we build a neural network that obeys a set of logi-
cal constraints Γ? Can we build a neural network from a
classical model?

We refer the reader to the landmark survey (Odense and
d’Avila Garcez 2022), which shows that this framework en-
compasses a wide class of neuro-symbolic systems. We will
discuss other work that we consider part of the core theory in
the next section.

The standard example is the forward propagation operator
Prop over a net N . Active neurons in a state S successively
activate new neurons until eventually the state of the net
stabilizes — Prop(S) returns the state at the fixed point. A
classic result from (Leitgeb 2001) is this: Say conditionals
φ⇒ ψ are interpreted as

N |= φ⇒ ψ iff Prop([[φ]]) ⊇ [[ψ]]

i.e., ψ is activated by input φ; or “the net classifies φ as ψ”.
Then, in a binary feed-forward net, Prop is completely ax-
iomatized by the loop-cumulative conditional laws of (Kraus,
Lehmann, and Magidor 1990). The result is robust, and can
be extended to different choices of conditional axioms and
neural network architectures (Leitgeb 2003). The general
takeaway is that forward propagation corresponds to a non-
monotonic conditional.

A central challenge for this theory is to do the same for
neural network learning operators. Our previous work (Kisby,
Blanco, and Moss 2022) considers a simple learning policy
— naı̈ve Hebbian update (“neurons that fire together wire
together”) — on a binary, feed-forward net. Although this
work offers sound axioms for Hebbian learning, the question
of completeness is left open.

Our Contribution. In this paper we tackle the complete-
ness of Hebbian learning. We map a dynamic operator [φ]
instead to iterated Hebbian update Hebb∗, i.e., “update the
net by repeatedly applying Hebb’s learning rule until a fixed-
point.” Our main result is that we can “translate away” [φ]-
formulas by reducing them to formulas that reason only about

forward propagation and graph reachability. It follows that
iterated Hebbian learning is completely axiomatized by the
reduction axioms we used in translation, plus whatever ax-
ioms the base logic needs. To our knowledge, this result is
the first ever completeness theorem for any learning policy
on neural networks.

There are two major upshots of this result. First, these
reduction axioms give a complete and human-interpretable
description of iterated Hebbian learning as a dynamic plau-
sibility upgrade. Second, assuming we have model building
for the base logic, we can use these reduction axioms to build
neural networks with guarantees on what they can learn.

The proofs of our main theorem and its major support-
ing lemmas have been verified using the Lean 4 interactive
theorem prover (Moura and Ullrich 2021). The code and
installation instructions are available at

https://github.com/ais-climber/AAAI2024

2 Related Work

Neural Network Semantics. The idea that neural networks
can be viewed as models for logic dates back to (McCulloch
and Pitts 1943). But the neural network semantics we present
here builds on a recent reimagining of this (Balkenius and
Gärdenfors 1991; Leitgeb 2018), where logical formulas are
mapped to states of the net rather than to individual neu-
rons (thus avoiding the “grandmother cell” problem (Gross
2002)). Early work established the formal correspondence be-
tween forward propagation and conditional belief (Balkenius
and Gärdenfors 1991; Leitgeb 2001, 2003; Blutner 2004).
Note that all of this early work focuses on binary nets. More
recently, (Giordano and Theseider Dupré 2021) and (Gior-
dano, Gliozzi, and Theseider Dupré 2022) prove soundness
for forward propagation over fuzzy neural networks. And as
mentioned above, (Kisby, Blanco, and Moss 2022) shows
soundness — but not completeness — for a simple Hebbian
learning policy.

Dynamic Logics for Learning. Our approach to modeling
iterated Hebbian learning takes inspiration from dynamic
epistemic and doxastic logics (DELs) (Van Ditmarsch, van
Der Hoek, and Kooi 2007; Van Benthem 2011). Two recent
papers, (Baltag, Li, and Pedersen 2019; Baltag et al. 2019)
present DELs that model an agent’s learning. But it is unclear
how these learning policies might relate to specific neural
implementations of learning such as Hebbian update and
backpropagation.

We also use the trick of completeness by translation, which
has notably been used to prove completeness for public
announcement logic without common knowledge (Baltag,
Moss, and Solecki 1998; Plaza 2007), as well as plausibil-
ity upgrade operators such as lexicographic and elite up-
grade (Van Benthem 2007). Perhaps the closest logics to
ours are these logics for plausibility upgrade, especially iter-
ated plausibility upgrade (Baltag and Smets 2009). But we
leave open the precise relationship between these logics and
Hebbian update.

3 Base Logic and Neural Network Semantics
Neural Network Preliminaries
For our base logic (without update), a model of our neural
network semantics is just a special kind of artificial neural
network (ANN), along with an interpretation function. First,
we spell out precisely what class of neural networks Net
we’re talking about. In general,
Definition 1. An ANN is a pointed directed graph
N = ⟨N,E,W,A, η⟩ ∈ Net, where
• N is a finite nonempty set (the set of neurons)
• E ⊆ N ×N (the set of excitatory connections)
• W : E → Q (the weight of a given connection)
• A : Q→ Q (the activation function)
• η ∈ Q, η ≥ 0 (the learning rate)

We write m ∈ preds(n), i.e., m is a predecessor of n, when-
ever (m,n) ∈ E. We also write deg(n) to indicate the degree
(number of predecessors) of n.

We place the following restrictions on our nets N ∈ Net.
A is binary. A : Q→ {0, 1} is a binary activation function.
A is nondecreasing. ∀x, y ∈ Q if x ≤ y then A(x) ≤ A(y)
A has a threshold. ∃t ∈ Q such that A(t) = 1.
N is feed-forward. The graph of N is acyclic.
N is fully connected. ∀m,n ∈ N , either (m,n) ∈ E,

(n,m) ∈ E, or m and n have exactly the same prede-
cessors and successors.

The first three conditions restrict A to binary step functions,
which we need in order to match binary activations to binary
truth values in the logic. But this assumption is clearly unreal-
istic in practice. Letting it go would instead require mapping
fuzzy activations to fuzzy truth values (left to future work).

In machine learning practice, “fully connected” means that
there is an edge from every node in layer l to every node in
the following layer l+ 1. But here we mean something much
stronger: the graph is fully connected, including “highway
edges” that cut between layers, as shown in Figure 1. (This
intuition comes from work on highway networks (Srivastava,
Greff, and Schmidhuber 2015).) This assumption is crucial
for our results about iterated Hebbian learning, and we expect
that letting it go will not be easy (see Section 7).

Since our nets are feed-forward, their nodes can be par-
titioned into layers. For every neuron n ∈ N , we define
layer(n) to be the maximal length of a path from any node
m to n, where m has no predecessors. Because our nets N
are fully connected, for all m,n ∈ N we have m ∈ preds(n)
iff layer(m) < layer(n).

Forward Propagation and Reachability
We now consider two fundamental neural network operators:
Forward propagation Prop and graph reachability Reach. We
formalize both of these as operators on the state of the neural
network; a state is just a possible activation pattern of neurons
in the net. Since our activation function A is binary, either a
neuron is active (1) or it is not (0). So we can identify the
states of N with sets of neurons.

State = {S | S ⊆ N}

n

S Reach(S)

Figure 1: The graph reachability operator Reach.

If our activations were continuous A ∈ [0, 1], then we
would identify states with fuzzy sets instead. We get the acti-
vation value of a particular neuron n in a state S as follows.

Definition 2. Let S ∈ State. The characteristic function
χS : N → {0, 1} is given by χS(n) = 1 iff n ∈ S.

The Reach operator is just ordinary graph-reachability:
Reach(S) returns the set of all neurons reachable from S
(illustrated in Figure 1). Formally, ReachN : State→ State
is given by n ∈ Reach(S) iff there exists m ∈ S with an
E-path from m to n.
Reach is not a very interesting operator in its own right,

but we include it because graph reachability is necessary for
reasoning about Hebbian learning. It’s easy to check that
Reach is an ordinary monotonic closure operator.

Proposition 1. For all S,A,B ∈ State,

Inclusion. S ⊆ Reach(S)
Idempotent. Reach(Reach(S)) = Reach(S)
Monotonic. If A ⊆ B then Reach(A) ⊆ Reach(B).

The more important operator is Prop, which captures how
activation patterns are “propagated forward” through the net.
As we mentioned in the Introduction, the idea is that active
neurons in a state S successively activate new neurons. The
activation of each neuron n is a function of its predecessor’s
activations. Prop(S) returns the state at the fixed point of
the process, i.e., the set of all neurons that are eventually
activated on input S (illustrated in Figure 2).

We formalize forward propagation as follows, drawing
heavily from (Leitgeb 2001).

Definition 3. Let n ∈ N , and let m⃗ = m1, . . . ,mdeg(n) list
the predecessors of n. We define PropN : State → State
recursively on l = layer(n) as follows.

Base (l = 0). n ∈ PropN (S) iff n ∈ S
Constructor (l ≥ 0). n ∈ PropN (S) iff either n ∈ S, or n

is activated by its predecessors mi ∈ PropN (S), i.e.,

A(

deg(n)∑
i=1

W (mi, n) · χPropN (S)(mi)) = 1

If N is clear from context, we just write Prop(S).

Note that Prop is well-founded, since all predecessors
mi ∈ preds(n) have layer(mi) < layer(n). Also note that
our definition differs somewhat from (Leitgeb 2001), which
defines Prop over inhibition nets — weightless nets with

n

S
Prop(S)

Figure 2: The forward propagation operator Prop.

both excitatory and inhibitory connections. But that paper
also proves that inhibition nets and binary, feed-forward nets
have the same Prop-structure. So we import the results here.

We can think of Prop as the nonmonotonic counterpart
to Reach; it is not the case that for all A,B ∈ State, if
A ⊆ B then Prop(A) ⊆ Prop(B). This is because our net’s
weights can be negative, and so Prop(B) can inhibit the
activation of new neurons that would otherwise be activated
by Prop(A). Instead, we can characterize Prop as a loop-
cumulative closure operator.
Proposition 2. (Leitgeb 2001) Let S, S1, . . . , Sk ∈ State.
Inclusion. S ⊆ Prop(S)
Idempotence. Prop(Prop(S)) = Prop(S)
Cumulative. If S1 ⊆ S2 ⊆ Prop(S1),

then Prop(S1) = Prop(S2)
Loop. If S1 ⊆ Prop(S0), . . . , Sk ⊆ Prop(Sk−1), and
S0 ⊆ Prop(Sk), then Prop(Si) = Prop(Sj) for all
i, j ∈ {0, . . . , k}

These Loop and Cumulative properties together are a well-
known weakening of monotonicity (see (Kraus, Lehmann,
and Magidor 1990)).

Syntax, Semantics, and Base Axioms
Now let us state formally the specific logic and neural net-
work semantics we consider. Let p, q, . . . be finitely many
atomic variables. These represent fixed states, corresponding
to features in the external world that we know ahead of time.
Usually these are input and output states, although they could
be intermediate “hidden” states if we know these features
ahead of time. For example, p might be the set of neurons
that represent the color pink. For more complex formulas,
Definition 4. Formulas of our language L∗ are given by

φ,ψ ::= p | ¬φ | φ ∧ ψ | Kφ | Tφ | [φ]ψ
We define ⊤,⊥,∨,→,↔, and the dual modal operators
⟨K⟩, ⟨T⟩, ⟨φ⟩ in the usual way. Additionally, let our base
language L consist of all the [φ]-free formulas in L∗.

First, let us give intuitive readings for these formulas; we
will soon ground these readings with formal semantics. Kφ
reads “the agent knows φ,” and Tφ reads “the typical φ” or
sententially as “typically φ.” Note that we can express condi-
tionals φ⇒ ψ in this language as Tφ→ ψ, i.e., “the typical
φ is ψ.” Finally, the dynamic operator [φ]ψ reads “after the
agent learns φ, ψ holds.” In Section 6, we will discuss the
sense in which this learning is a plausibility upgrade.

Formally, a model for this logic is just a netN ∈ Net along
with an interpretation function [[·]]N : L → State that maps
each formula to the set of neurons it denotes. We drop the
subscript when N is clear from context. For the base logic
formulas (over L), the idea is to map possible knowledge
⟨K⟩ to Reach and possible typicality ⟨T⟩ to Prop. In the next
section, we will explain how we map [φ] to Hebbian learning.
Definition 5. The semantics of our base logic is given recur-
sively, using the dual forms ⟨K⟩ and ⟨T⟩, as follows.

[[p]] ∈ State is fixed, nonempty
[[¬φ]] = [[φ]]∁

[[φ ∧ ψ]] = [[φ]] ∩ [[ψ]]
[[⟨K⟩φ]] = Reach([[φ]])
[[⟨T⟩φ]] = Prop([[φ]])

To better understand this mapping, think of the net N
loosely as a kind of possible worlds model. Its edges repre-
sent epistemic accessibility; the nodes reachable from [[φ]]
are the nodes where it’s possible to know φ. Similarly, the
propagation of [[φ]], determined by the weights of the net,
constrains which nodes it is possible to find typical of φ. In
this sense, the propagation Prop([[φ]]) is dual to the notion of
a prototype in psychology (Murphy 2004).

So far, we have defined formulas in terms of the features
they denote, e.g., the color pink. But we can also read formu-
las sententially, e.g., “the current state is pink.” We consider
the sentence φ to be true in a net N as follows.
Definition 6. N |= φ iff [[φ]]N = N

An important special case is the conditional φ⇒ ψ. As be-
fore, we express this (over L) as Tφ→ ψ. Observe that this
is true whenever Prop([[φ]]) ⊇ [[ψ]], which tells us whether,
given input [[φ]], the net’s propagated state includes [[ψ]]. So
φ⇒ ψ conveniently expresses “the net classifies φ as ψ.”

We define the logic’s proof system in the usual way (the
following applies to both L and L∗). We have ⊢ φ iff either φ
is an axiom, or φ follows from previously obtained formulas
by one of the inference rules. For a set of formulas Γ, Γ ⊢ φ
holds if there exist finitely many ψ1, . . . , ψk ∈ Γ such that
⊢ ψ1 ∧ · · · ∧ ψk → φ. A set Γ is consistent if Γ ̸⊢ ⊥.

We now list axioms for the base logic. We should empha-
size that these axioms may not be complete, and we leave
this question to future work. Rather, our focus in this paper
is on the completeness of the dynamic operator [φ], given the
completeness of the base logic.

For T alone, (Leitgeb 2001) proves that the properties
in Proposition 2 are complete for Prop over binary, feed-
forward nets. We transcribe these into our modal language.
Nec. From ⊢ φ we can infer ⊢ Tφ
Dual. ⟨T⟩φ↔ ¬T¬φ
Refl. Tφ→ φ

Trans. Tφ→ TTφ
Cumulative. (φ→ ψ) ∧ (Tψ → φ)→ (Tφ→ ψ)

Loop. (Tφ0 → φ1) ∧ · · · ∧ (Tφk → φ0)
→ (Tφ0 → φk)

But remember that our nets are also fully connected! So we
need to modify the model construction from (Leitgeb 2001)

by introducing a zero weight edge between every pair of
previously unconnected nodes. Note that this change does
not affect the Prop-structure of the net.

As for K, we at least have the following sound axioms,
transcribed from Proposition 1.

Nec. From ⊢ φ we can infer ⊢ Kφ
Dual. ⟨K⟩φ↔ ¬K¬φ
Distr. K(φ→ ψ)↔ (Kφ→ Kψ)
Refl. Kφ→ φ

Trans. Kφ→ KKφ
These axioms are the usual complete axioms for normal
modal logic over reflexive and transitive frames. So far these
axioms seem innocuous enough. But for completeness, the
catch is that K and T may interact in ways that affect the
model construction. For example, the following axiom is easy
to check, but it is not clear whether it is sufficient.

Incl. Kφ→ Tφ

4 Dynamics of Iterated Hebbian Update
Single-Step Hebbian Update
The plan from here is to extend this base logic with a dy-
namic operator [φ] for Hebbian update. Hebb’s classic learn-
ing rule (Hebb 1949) states that when two adjacent neurons
are simultaneously and persistently active, the connection
between them strengthens. In contrast with, e.g., backpropa-
gation, Hebbian learning is errorless and unsupervised. An-
other key difference is that Hebbian update is local — the
change in a weight ∆W (m,n) depends only on the activa-
tion of the immediately adjacent neurons. For this reason, the
Hebbian family of learning policies is often considered more
biologically plausible than backpropagation. There are many
variations of Hebbian learning, but we only consider the most
basic form of Hebb’s rule: ∆W (m,n) = ηxmxn, where η
is the learning rate and xm, xn are the outputs of adjacent
neurons m and n. Note that this is the unstable variation
of Hebb’s rule; repeatedly applying the rule will make the
weights arbitrarily large. In this paper, we will not consider
stabilizing variants such as Oja’s rule (Oja 1982).

Before we formalize iterated Hebbian learning, let us con-
sider a single step of Hebbian update Hebb. Given a net
N and a state S, we first forward-propagate S through N .
Intuitively, Hebb(N , S) returns the net that we obtain by ap-
plying Hebb’s rule: Any edges that are involved in the propa-
gated activation pattern simply have their weights strength-
ened. This is illustrated in Figure 3.

Definition 7. Let Hebb : Net × State → Net be given by
Hebb(⟨N,E,W,A, η⟩, S) = ⟨N,E,W ′, A, η⟩, where

W ′(m,n) =W (m,n) + η · χProp(S)(m) · χProp(S)(n)

For propositions p we define [[p]]Hebb(N ,S) = [[p]]N .

Note that Hebb does not affect the edges or activation
function. This means the resulting net is still binary, feed-
forward, and fully connected, and so Hebb is well-defined.
This also means Hebb does not affect the Reach operator.

Proposition 3. ReachHebb(N ,A)(B) = ReachN (B)

n

S
Prop(S)

Figure 3: Hebb strengthens those edges whose neurons are
active in Prop(S). The fixed-point operator Hebb∗ repeats
this update until the edges are “maximally” high.

The following is easy to see (since η ≥ 0).

Proposition 4. Let m,n ∈ N . We have:

• WN (m,n) ≤WHebb(N ,S)(m,n)
• If either m ̸∈ Prop(S) or n ̸∈ Prop(S), then

WHebb(N ,S)(m,n) =WN (m,n)

Iterated Hebbian Update
We now turn to iterated Hebbian update Hebb∗. Recall that
our single-step Hebbian update is unstable. So if we repeat
Hebb on a single input state S, the net’s weights within
Prop(S) will be so high that any activation pattern that makes
contact with Prop(S) will “rip through” it entirely. Repeating
Hebb on S further will not change the Prop-structure, i.e.,
the update has reached a fixed point. Hebb∗ returns the net at
this fixed point. Intuitively: If φ = ψ1 ∧ · · · ∧ ψk is a dataset
of inputs over which we train our netN , then Hebb∗(N , [[φ]])
is the net that has “fully internalized” this training set φ.

Why do we study the fixed-point update, rather than single-
step Hebb? Our main reason is that we have a plan of attack
for completeness. As we will see, this fixed point is simple
enough to completely describe using just Reach and Prop.

Constructing the Fixed Point. Rather than reason ab-
stractly about the fixed point, we can explicitly define the
number of iterations iter needed to reach it. The idea is to set
iter to be high enough such that all updated weightsW (m,n)
overpower any negative weights that would otherwise cancel
their effect. The following definition captures the idea of the
lowest possible value a weighted sum could have.

Definition 8. Let n ∈ N , and let m⃗ = m1, . . . ,mk list the
predecessors of n. The negative weight score of n is the sum
of all the negative weights of n’s predecessors, i.e.,

nws(n) =

deg(n)∑
i=1

{
W (mi, n) if W (mi, n) < 0

0 otherwise

The minimum negative weight score is simply

mnws = min
n∈N

nws(n)

Recall that an activation function A has a threshold, i.e.,
there is some t ∈ Q with A(t) = 1. We set the number of

iterations iter to be exactly

iter =

{
⌈ t−|N |·mnws

η ⌉ if ≥ 1

1 otherwise

Note that iter will always be a positive integer, and so iterat-
ing iter times is well-defined. This choice for iter may seem
opaque, but we will see in Lemma 1 why it guarantees that
the updated weights overpower competing edge weights.

Defining the Update. We are now ready to define Hebb∗.
Hebb(N , S) simply returns the net that we obtain by apply-
ing Hebb’s rule iter times.
Definition 9. Let Hebb∗ : Net× State→ Net be given by
Hebb∗(⟨N,E,W,A, η⟩, S) = ⟨N,E,W ′, A, η⟩, where

W ′(m,n) =W (m,n)+ iter · η ·χProp(S)(m) ·χProp(S)(n)

Again, for propositions p we define [[p]]Hebb∗(N ,S) = [[p]]N .
Notice that for each iteration, we’re always updating by

Prop(S) in the original net. We might worry that a single
iteration of Hebb would affect Prop(S), and that we would
have to track those changes every iteration. Fortunately, this
is not the case. For all S ∈ State,
Proposition 5. PropHebb(N ,S)(S) = PropN (S)

As with Hebb, for Hebb∗ we have
Proposition 6. ReachHebb∗(N ,A)(B) = ReachN (B)

Proposition 7. Let m,n ∈ N . We have:
• WN (m,n) ≤WHebb∗(N ,S)(m,n)
• If either m ̸∈ Prop(S) or n ̸∈ Prop(S), then

WHebb∗(N ,S)(m,n) =WN (m,n)

The following fact about Hebb∗ is the most important.
It is a formal expression of our statement before: Updated
weights WHebb∗(N ,A)(B) are so high that if m is active in
Hebb∗(N , A) then n must be as well.
Lemma 1. Let A,B ∈ State,m, n ∈ N . If m ∈ preds(n),
m,n ∈ Prop(A), and m ∈ PropHebb∗(N ,A)(B), then

A(

deg(n)∑
i=1

WHebb∗(N ,A)(mi, n) ·χPropHebb∗(N ,A)(B)(mi)) = 1

Proof Sketch. Since the activation function A has a thresh-
old, ∃t ∈ Q with A(t) = 1. Since A is nondecreasing, it’s
enough to show that this weighted sum ≥ t. From here we
can pull the m-term out of the weighted sum, then apply the
definition of Hebb∗ and the fact that m,n ∈ Prop(S),m ∈
PropHebb∗(N ,A)(B) to eventually get∑deg(n)

i=1 WHebb∗(N ,A)(mi, n) · χPropHebb∗(N ,A)(B)(mi)

≥ |N | ·mnws+ iter · η

So we just need to show

t ≤ |N | ·mnws+ iter · η

but we chose iter to satisfy precisely this inequality!

Formal Semantics for the Update. We can now spell out
the semantics of the dynamic operator [φ]. Whereas our base
operators K and T are interpreted as states in the underlying
net, [φ] changes the net itself. We formalize this [φ] using the
standard dynamic epistemic logic trick (Van Ditmarsch, van
Der Hoek, and Kooi 2007), i.e.,

[[[φ]ψ]]N = [[ψ]]Hebb∗(N ,[[φ]])

In other words, in order to evaluate [[[φ]ψ]], we simply evalu-
ate [[[φ]ψ]] in the Hebb∗-updated net.

The Reduction for Hebb∗

Our main technical result is that we can “translate away” [φ]-
formulas by reducing them to formulas in the base logic. To
do this, we first need to show how Hebb∗ reduces to Reach
and Prop. We already have Proposition 6, which says that
Hebb∗ does not affect Reach. In this section, we prove the
following reduction theorem for Hebb∗ over Prop.

PropHebb∗(N ,A)(B) = Prop(B ∪
(Prop(A) ∩ Reach(Prop(A) ∩ Prop(B)))) (†)

This theorem is at the heart of the reduction axioms that
we will use to reduce [φ] (see Section 4). To prove it, we will
first need the following algebraic properties for Hebb∗.

Lemma 2. Let A,B ∈ State. Hebb∗ satisfies the following
algebraic properties.

1. Prop(A) ∩ Prop(B) ⊆ PropHebb∗(N ,A)(B)

2. Prop(A) ∩ Reach(Prop(A) ∩ Prop(B))

⊆ PropHebb∗(N ,A)(B)

3. Prop(A) ∩ PropHebb∗(N ,A)(B)

⊆ Prop(A) ∩ Reach(Prop(A) ∩ Prop(B))

Proof Sketch. First, let us give some intuition for
these properties. Part (2) expresses a lower bound for
PropHebb∗(N ,A)(B), whereas (3) gives an upper bound; (1)
is just used to show (2). We sketch the proof of (1) here,
since the other two are similar.

Let n ∈ Prop(A) ∩ Prop(B), and proceed by induction
on layer(n). The base step is trivial. At layer(n) ≥ 0, we
case on the definition of Prop. If n ∈ B, then we just
apply Inclusion. Otherwise, n is activated by its predeces-
sors mi ∈ Prop(B) in N . By well-ordering, there is some
m ∈ Prop(A) ∩ Prop(B) with the smallest layer. Since n is
also in this intersection, layer(m) ≤ layer(n).

Case 1. layer(m) < layer(n). Since N is fully connected,
we must have m ∈ preds(n). From here we have exactly
the right conditions for Lemma 1, from which we have
n ∈ PropHebb∗(N ,A)(B).

Case 2. layer(m) = layer(n). In this case, we can induc-
tively argue that the weights of n’s predecessors in
Hebb∗(N , A) are the same as their weights in N , which
gives us n ∈ PropHebb∗(N ,A)(B).

We now have everything we need to prove the reduction.

Theorem 3 (Reduction). For all A,B ∈ State, (†) holds.

Proof Sketch. For all n ∈ N , we show that n ∈ the left-
hand side of (†) iff n ∈ the right-hand side, by induction on
layer(n). The base case is easy. At layer(n) ≥ 0, we show
each direction.

(→) Let n ∈ PropHebb∗(N ,A)(B). If n ∈ B, then we just
apply Inclusion. Otherwise, n is activated by its prede-
cessors mi. From here we split into two more cases: If
n ∈ Prop(A) and there is some active predecessormi, we
apply our inductive hypothesis and part (3) of Lemma 2.
Otherwise, we can argue that the two nets have exactly
the same predecessor weights.

(←) Let n ∈ Prop(B ∪ (Prop(A) ∩ Reach(Prop(A) ∩
Prop(B)))), and case on the definition of Prop. If n is in
this inner union term, then we just apply Inclusion or part
(2) of Lemma 2, depending on the case. Otherwise, n is
activated by its predecessors mi. From here we just apply
our inductive hypothesis and Proposition 7.

Note that if Prop(A) ∩ Prop(B) = ∅, then we have
Reach(Prop(A) ∩ Prop(A)) = ∅ as well. If we substitute
this into the statement of Theorem 3, we see the following. In
words, if Prop(A) and Prop(B) never meet, then updating
A will have no effect on the propagation of B.
Corollary 1. If Prop(A) ∩ Prop(B) = ∅ then

PropHebb∗(N ,A)(B) = Prop(B)

5 Reduction Axioms and Completeness
The payoff of our reduction theorem is that we can now see
how to translate [φ] sentences into [φ]-free sentences. It will
then follow that iterated Hebbian learning is completely ax-
iomatized by the reduction axioms used in translation, plus
whatever axioms the base logic needs. This is known as com-
pleteness by translation in the dynamic epistemic and doxas-
tic logic literature. See (Van Ditmarsch, van Der Hoek, and
Kooi 2007) for an introduction and (Van Benthem 2007) for
a discussion on this strategy in belief revision and plausibility
upgrade (we draw heavily from both of these sources).

First, we establish reduction axioms for [φ].
Theorem 4 (Reduction Axioms). The following are sound.

[φ]p ↔ p for propositions p
[φ]¬ψ ↔ ¬[φ]ψ
[φ](ψ ∧ ρ) ↔ [φ]ψ ∧ [φ]ρ
[φ]Kψ ↔ K[φ]ψ
[φ]Tψ ↔ T([φ]ψ ∧ (Tφ ∨K(Tφ ∨ T[φ]ψ)))

Proof Sketch. We check that each left-hand-side φ and right-
hand-side ψ have the same interpretation [[φ]]N = [[ψ]]N . The
first three cases are routine. The ⟨K⟩ case follows immedi-
ately from Proposition 6, and the ⟨T⟩ case follows immedi-
ately from Theorem 3 (the reduction theorem).

Notice that these axioms compositionally break down the
postconditions after [φ], and “push in” the [φ] operator in
each case. Given a set of formulas Γ ⊆ L∗, we can use these
axioms to “translate away” all instances of dynamic formulas
[φ]ψ in Γ, resulting in Γtr ⊆ L.

It’s easy to see intuitively how this translation should go.
For example, given the formula [p]([p]Tq ∧ Kp) ∈ Γ, we

would recursively apply our reduction axioms, pushing [p]
further into the expression until we can eliminate the propo-
sitional cases [p]q and [p]p. It is also intuitively clear that
this process terminates, and we skip it here. But beware —
actually proving that this process terminates is not trivial at
all; see (Baltag, Moss, and Solecki 2023).

Observe that the formulas φ ∈ Γ are provably equivalent
to their translations φ′ ∈ Γtr. So a net models Γ ⊆ L∗

iff it models Γtr ⊆ L. This means that our nets already
contain all information about what they learn after iterated
Hebbian update. Moreover, model building over L∗ follows
from model building over our base language L.

Theorem 5 (Model Building). Suppose that we have model
building for our base language L, i.e., for all consistent Γ ⊆
L there is a net N ∈ Net such that N |= Γ. Then we have
model building for our dynamic language as well: for all
Γ ⊆ L∗, there is N such that N |= Γ.

Assuming we have completeness for the base logic, com-
pleteness for L∗ then follows from model building.

Theorem 6 (Completeness). Suppose we have a complete
axiomatization for ⟨K⟩ and ⟨T⟩. Then the logic of iterated
Hebbian learning [φ] is completely axiomatized by these
laws, plus the above reduction axioms: for all consistent
Γ ⊆ L∗, if Γ |= φ then Γ ⊢ φ.

Proof. Suppose contrapositively that Γ ̸⊢ φ. Then Γ∪ {¬φ}
is consistent. We can apply the translation above to Γ ∪
{¬φ} to obtain Γtr ⊆ L. Since we assumed the base logic
is complete, we have a net N |= Γtr. By Theorem 5, N |=
Γ ∪ {¬φ}. But then N |= Γ yet N ̸|= φ, which is what we
wanted to show.

6 Discussion
Interpreting the Reduction Axioms
One major goal of neuro-symbolic AI is to make neural
networks and their learning algorithms more interpretable.
Neural network semantics provides a direct way to do this, by
proving correspondences between neural network operators
and more interpretable logical operators. We have shown in
particular that iterated Hebbian update Hebb∗ corresponds
to a dynamic operator [φ] that is characterized by our reduc-
tion axioms. What do these reduction axioms teach us about
iterated Hebbian learning?

First, notice the form of these axioms. Each expresses what
is true after the net learns φ in terms of what was true before
learning φ. But the only operator that changes is typicality T.
So we can think of Hebb∗ as a plausibility upgrade operator.
The final line

[φ]Tψ ↔ T([φ]ψ ∧ (Tφ ∨K(Tφ ∨ T[φ]ψ)))

reveals the plausibility upgrade policy that Hebb∗ uses.
Let’s unpack this. This axiom says that whether the agent

found ψ plausible before learning φ, after learning φ she
now also expects this Tφ ∨K(Tφ ∨ T[φ]ψ) term to be true.
And the ↔ indicates that the agent learns only this term.
So what exactly has she learned to think is plausible? This
complicated inner term states: Either (1) the agent found φ

plausible in the first place (i.e., she learns nothing), or (2) she
now knows about her prior expectations regarding φ and ψ.

So iterated Hebbian learning revises an agent’s plausibility
beliefs by expanding what she thinks she can plausibly intro-
spect on. And although this is a mouthful, with some effort
these reduction axioms give a human-interpretable descrip-
tion of what a Hebbian learner learns.

Why Bother with Completeness?
To our knowledge, Theorem 6 is the first ever complete-
ness theorem for any learning policy on neural networks.
Soundness alone for neural networks is interesting in its own
right, since sound axioms give us formally verified guaran-
tees about the neural network’s behavior (Albarghouthi et al.
2021; d’Avila Garcez, Broda, and Gabbay 2001).

But for neural network semantics, completeness has an
important practical consequence. Completeness is equivalent
to neural network model building, i.e., building a neural
network that obeys a set of constraints Γ. Using [φ], our
constraints Γ can express guarantees about the net at the
fixed point of Hebbian learning. For example, we can build
a net that models (Tψ → ρ) ∧ [φ](Tψ → ρ), which says
that the net classifies the input ψ as ρ, and iterated Hebbian
learning preserves this fact.

The importance of this for learning policies used in practice
(e.g., backpropagation) is hard to understate. The problem of
AI alignment is largely a matter of building neural networks
with these kinds of guarantees. But this idea is in its early
stages, and many crucial details still need to be worked out.
For example, we often want to build neural networks that
obey constraints at each update step, rather than at some
theoretical fixed point. In the next section, we mention future
research directions that could make this approach more useful
in practice.

7 Conclusions and Future Directions
In this paper, we mapped a dynamic logic operator [φ] to
a simple neural network learning policy, iterated Hebbian
learning. We gave reduction axioms that “translate away” [φ]-
formulas; consequently, completeness for iterated Hebbian
learning follows from completeness for the base logic.

Our reduction axioms characterize iterated Hebbian learn-
ing as a type of plausibility upgrade. This raises the question
of whether there a general correspondence between neural
network learning and plausibility upgrade policies.

Our work also provides proof of concept that we can build
neural networks that obey constraints on their learning. But
more work needs to be done to make this useful in practice.
As we mentioned before, we often want guarantees for what
the neural network learns at each step. What we would need is
a complete logic for single-step Hebb, but this is non-trivial.

It is natural to consider whether this kind of logical anal-
ysis could be applied to backpropagation. This is currently
an open question, and it is a major long-term goal of neu-
ral network semantics. This will require new ideas, since
the framework has yet to address supervised learning and
convergence.

Acknowledgements
C. Schultz Kisby and S. Blanco were supported in part by the
US Department of Defense [Contract No. W52P1J2093009].
We also thank the anonymous reviewers for their helpful
suggestions.

References
Albarghouthi, A.; et al. 2021. Introduction to neural network
verification. Foundations and Trends® in Programming Lan-
guages, 7(1–2): 1–157.
Bader, S.; and Hitzler, P. 2005. Dimensions of neural-
symbolic integration-a structured survey. In We Will Show
Them! Essays in Honour of Dov Gabbay, Volume 1, 167–194.
College Publications.
Balkenius, C.; and Gärdenfors, P. 1991. Nonmonotonic infer-
ences in neural networks. In KR, 32–39. Morgan Kaufmann.
Baltag, A.; Gierasimczuk, N.; Özgün, A.; Sandoval, A. L. V.;
and Smets, S. 2019. A dynamic logic for learning theory.
Journal of Logical and Algebraic Methods in Programming,
109: 100485.
Baltag, A.; Li, D.; and Pedersen, M. Y. 2019. On the right
path: a modal logic for supervised learning. In Interna-
tional Workshop on Logic, Rationality and Interaction, 1–14.
Springer.
Baltag, A.; Moss, L. S.; and Solecki, S. 1998. The logic of
public announcements, common knowledge, and private sus-
picions. In Proceedings of the 7th conference on Theoretical
aspects of rationality and knowledge, 43–56.
Baltag, A.; Moss, L. S.; and Solecki, S. 2023. Logics for
epistemic actions: completeness, decidability, expressivity.
Logics, 1(2): 97–147.
Baltag, A.; and Smets, S. 2009. Group belief dynamics under
iterated revision: fixed points and cycles of joint upgrades. In
Proceedings of the 12th Conference on Theoretical Aspects
of Rationality and Knowledge, 41–50.
Besold, T.; d’Avila Garcez, A.; Bader, S.; et al. 2017. Neural-
Symbolic Learning and Reasoning: A Survey and Interpreta-
tion. In Neuro-Symbolic Artificial Intelligence.
Blutner, R. 2004. Nonmonotonic inferences and neural net-
works. Synthese, 142: 143–174.
d’Avila Garcez, A.; Broda, K.; and Gabbay, D. M. 2001.
Symbolic knowledge extraction from trained neural networks:
A sound approach. Artificial Intelligence, 125(1-2): 155–207.
Giordano, L.; Gliozzi, V.; and Theseider Dupré, D. 2022.
A conditional, a fuzzy and a probabilistic interpretation of
self-organizing maps. Journal of Logic and Computation,
32(2): 178–205.
Giordano, L.; and Theseider Dupré, D. 2021. Weighted
defeasible knowledge bases and a multipreference semantics
for a deep neural network model. In Logics in Artificial
Intelligence: 17th European Conference, JELIA 2021, Virtual
Event, May 17–20, 2021, Proceedings 17, 225–242. Springer.
Gross, C. G. 2002. Genealogy of the “grandmother cell”.
The Neuroscientist, 8(5): 512–518.

Harmelen, F. 2022. Preface: The 3rd AI Wave Is Coming, and
It Needs a Theory. In Neuro-Symbolic Artificial Intelligence:
The State of the Art, V–VII. IOS Press BV.
Hebb, D. 1949. The Organization of Behavior. Psychology
Press.
Kisby, C.; Blanco, S.; and Moss, L. 2022. The Logic of
Hebbian Learning. In The International FLAIRS Conference
Proceedings, volume 35.
Kraus, S.; Lehmann, D.; and Magidor, M. 1990. Nonmono-
tonic reasoning, preferential models and cumulative logics.
Artificial intelligence, 44(1-2): 167–207.
Leitgeb, H. 2001. Nonmonotonic reasoning by inhibition
nets. Artificial Intelligence, 128(1-2): 161–201.
Leitgeb, H. 2003. Nonmonotonic reasoning by inhibition
nets II. International Journal of Uncertainty, Fuzziness and
Knowledge-Based Systems, 11(supp02): 105–135.
Leitgeb, H. 2018. Neural Network Models of Conditionals.
In Introduction to Formal Philosophy, 147–176. Springer.
McCulloch, W. S.; and Pitts, W. 1943. A logical calculus
of the ideas immanent in nervous activity. The Bulletin of
Mathematical Biophysics, 5(4): 115–133.
Moura, L. d.; and Ullrich, S. 2021. The Lean 4 theorem
prover and programming language. In Automated Deduction–
CADE 28: 28th International Conference on Automated De-
duction, Virtual Event, July 12–15, 2021, Proceedings 28,
625–635. Springer.
Murphy, G. 2004. The big book of concepts. MIT press.
Odense, S.; and d’Avila Garcez, A. S. 2022. A Seman-
tic Framework for Neural-Symbolic Computing. ArXiv,
abs/2212.12050.
Oja, E. 1982. Simplified neuron model as a principal compo-
nent analyzer. Journal of mathematical biology, 15: 267–273.
Plaza, J. A. 2007. Logics of public communications. Syn-
these, 158: 165–179.
Sarker, M. K.; Zhou, L.; Eberhart, A.; and Hitzler, P. 2022.
Neuro-Symbolic Artificial Intelligence: Current Trends. AI
Communications, 34.
Srivastava, R. K.; Greff, K.; and Schmidhuber, J. 2015. Train-
ing Very Deep Networks. In Cortes, C.; Lawrence, N.; Lee,
D.; Sugiyama, M.; and Garnett, R., eds., Advances in Neural
Information Processing Systems, volume 28. Curran Asso-
ciates, Inc.
Van Benthem, J. 2007. Dynamic logic for belief revision.
Journal of applied non-classical logics, 17(2): 129–155.
Van Benthem, J. 2011. Logical dynamics of information and
interaction. Cambridge University Press.
Van Ditmarsch, H.; van Der Hoek, W.; and Kooi, B. 2007.
Dynamic epistemic logic, volume 337. Springer.

