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Foundations for Neuro-Symbolic AI

From van Harmelen (2022):

“What are the possible interactions between knowledge and learning? 
Can reasoning be used as a symbolic prior for learning . . . Can symbolic 
constraints be enforced on data-driven systems to make them safer? Or 
less biased? Or can, vice versa, learning be used to yield symbolic 
knowledge? And if so, how to manage the inherent uncertainty that 
comes with such learned knowledge . . .”

“. . . neuro-symbolic systems currently lack a theory that even 
begins to ask these questions, let alone answer them.’’

2van Harmelen, F. “Preface: The 3rd AI Wave Is Coming, and It Needs a Theory”. In: Neuro-Symbolic Artificial Intelligence. 
Ed. by P. Hitzler and M. Sarker. IOS Press BV, 2022.



Neural Network Semantics

3

● We assume: The network is weighted, feed-forward, fully-connected, with binary 
activations. The net' s states (activation patterns) are just given by sets of nodes.

● Key Idea: Neural networks are not merely black boxes!  Instead, think of nets as 
a kind of (logical) model; The dynamics of its states contain information about its 
conditional beliefs.

Balkenius, C. and Gardenfors, P. Nonmonotonic inferences in neural networks. In KR, 32–39. Morgan Kaufmann, 1991.

Leitgeb, H. Neural Network Models of Conditionals. In Introduction to Formal Philosophy, 147–176. Springer, 2018.



Neural Network Semantics

4

● We assume: The network is weighted, feed-forward, fully-connected, with binary 
activations. The net' s states (activation patterns) are just given by sets of nodes.

● Key Idea: Neural networks are not merely black boxes!  Instead, think of nets as 
a kind of (logical) model; The dynamics of its states contain information about its 
conditional beliefs.

Balkenius, C. and Gardenfors, P. Nonmonotonic inferences in neural networks. In KR, 32–39. Morgan Kaufmann, 1991.

Leitgeb, H. Neural Network Models of Conditionals. In Introduction to Formal Philosophy, 147–176. Springer, 2018.



Neural Network Semantics

5

● We assume: The network is weighted, feed-forward, fully-connected, with binary 
activations. The net' s states (activation patterns) are just given by sets of nodes.

● Key Idea: Neural networks are not merely black boxes!  Instead, think of nets as 
a kind of (logical) model; The dynamics of its states contain information about its 
conditional beliefs.

Balkenius, C. and Gardenfors, P. Nonmonotonic inferences in neural networks. In KR, 32–39. Morgan Kaufmann, 1991.

Leitgeb, H. Neural Network Models of Conditionals. In Introduction to Formal Philosophy, 147–176. Springer, 2018.



Neural Network Semantics

6

● We assume: The network is weighted, feed-forward, fully-connected, with binary 
activations. The net' s states (activation patterns) are just given by sets of nodes.

● Key Idea: Neural networks are not merely black boxes!  Instead, think of nets as 
a kind of (logical) model; The dynamics of its states contain information about its 
conditional beliefs.

Balkenius, C. and Gardenfors, P. Nonmonotonic inferences in neural networks. In KR, 32–39. Morgan Kaufmann, 1991.

Leitgeb, H. Neural Network Models of Conditionals. In Introduction to Formal Philosophy, 147–176. Springer, 2018.



Neural Network Semantics

7

● We assume: The network is weighted, feed-forward, fully-connected, with binary 
activations. The net' s states (activation patterns) are just given by sets of nodes.

● Key Idea: Neural networks are not merely black boxes!  Instead, think of nets as 
a kind of (logical) model; The dynamics of its states contain information about its 
conditional beliefs.

Balkenius, C. and Gardenfors, P. Nonmonotonic inferences in neural networks. In KR, 32–39. Morgan Kaufmann, 1991.

Leitgeb, H. Neural Network Models of Conditionals. In Introduction to Formal Philosophy, 147–176. Springer, 2018.



Neural Network Semantics

8

● We assume: The network is weighted, feed-forward, fully-connected, with binary 
activations. The net' s states (activation patterns) are just given by sets of nodes.

● Key Idea: Neural networks are not merely black boxes!  Instead, think of nets as 
a kind of (logical) model; The dynamics of its states contain information about its 
conditional beliefs.

Balkenius, C. and Gardenfors, P. Nonmonotonic inferences in neural networks. In KR, 32–39. Morgan Kaufmann, 1991.

Leitgeb, H. Neural Network Models of Conditionals. In Introduction to Formal Philosophy, 147–176. Springer, 2018.



Neural Network Semantics

9

● We assume: The network is weighted, feed-forward, fully-connected, with binary 
activations. The net' s states (activation patterns) are just given by sets of nodes.

● Key Idea: Neural networks are not merely black boxes!  Instead, think of nets as 
a kind of (logical) model; The dynamics of its states contain information about its 
conditional beliefs.

Balkenius, C. and Gardenfors, P. Nonmonotonic inferences in neural networks. In KR, 32–39. Morgan Kaufmann, 1991.

Leitgeb, H. Neural Network Models of Conditionals. In Introduction to Formal Philosophy, 147–176. Springer, 2018.



10Balkenius, C. and Gardenfors, P. Nonmonotonic inferences in neural networks. In KR, 32–39. Morgan Kaufmann, 1991.

Leitgeb, H. Neural Network Models of Conditionals. In Introduction to Formal Philosophy, 147–176. Springer, 2018.

Neural Network Semantics (Contd.)

● An input state will activate new nodes, which subsequently activate 
more nodes.  The forward propagation Prop(S) is the set of all neurons 
that are eventually activated by S.

The net satisfies A  B iff Prop( A )  B⇒ ⟦ ⟧ ⊇ ⟦ ⟧
In other words, the net classifies A as B.
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Soundness and Completeness

19Leitgeb, H. Neural Network Models of Conditionals. In Introduction to Formal Philosophy, 147–176. Springer, 2018.



Soundness and Completeness

Soundness

● Not: An explanation of a 
particular neural network’s 
behavior

● But instead: Sound rules give 
high-level properties for all 
neural networks (of a certain 
architecture)
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Completeness

● Equivalently: Can we build a 
neural network satisfying the 
set Γ of constraints?

⇝



Iterated Hebbian Learning

22D. Hebb. The Organization of Behavior. Psychology Press, 1949.

Neurons that fire together wire together

Repeat this update until a fixed point!
i.e. until the weights are “maximally high”

We call the resulting net Hebb*(N, S )⟦ ⟧
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Logic & Formal Semantics

31Kisby, C., Blanco, S., and Moss, L. The Logic of Hebbian Learning. In The International FLAIRS Conference Proceedings, 
volume 35, 2022.
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Future Work

● Stabilized Learning Policies. Hebb* increases the weights until 
they’re maximally large.  But stabilized hebbian learning (e.g. Oja’s 
rule) increases weights towards a convergent point.

● Single-step Update. We often want guarantees for what the neural 
network learns at each step.  This is the heart of AI Alignment.

● What about Backpropagation? This is our major long-term goal!

33



Check Out Our Poster + Paper!
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Contact:
Caleb Schultz Kisby
cckisby@iu.edu
https://ais-climber.github.io/
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