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Foundations for Neuro-Symbolic Al

From van Harmelen (2022):

“What are the possible interactions between knowledge and learning?
Can reasoning be used as a symbolic prior for learning . . . Can symbolic
constraints be enforced on data-driven systems to make them safer? Or
less biased? Or can, vice versa, learning be used to yield symbolic
knowledge? And if so, how to manage the inherent uncertainty that
comes with such learned knowledge . . "

“...neuro-symbolic systems currently lack a theory that even
begins to ask these questions, let alone answer them.”

van Harmelen, F. “Preface: The 3rd Al Wave Is Coming, and It Needs a Theory”. In: Neuro-Symbolic Artificial Intelligence.
Ed. by P. Hitzler and M. Sarker. 10S Press BV, 2022.



Neural Network Semantics

e We assume: The network is weighted, feed-forward, fully-connected, with binary
activations. The net' s states (activation patterns) are just given by sets of nodes.
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e Key Ildea: Neural networks are not merely black boxes! Instead, think of nets as

a kind of (logical) model; The dynamics of its states contain information about its
conditional beliefs.
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Balkenius, C. and Gardenfors, P. Nonmonotonic inferences in neural networks. In KR, 32-39. Morgan Kaufmann, 1991.

Leitgeb, H. Neural Network Models of Conditionals. In Introduction to Formal Philosophy, 147-176. Springer, 2018.
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Neural Network Semantics (Contd.)

e An input state will activate new nodes, which subsequently activate
more nodes. The forward propagation Prop(S) is the set of all neurons
that are eventually activated by S.
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The net satisfies A = B iff Prop([A]) 2 [B]
In other words, the net classifies A as B.

Balkenius, C. and Gardenfors, P. Nonmonotonic inferences in neural networks. In KR, 32-39. Morgan Kaufmann, 1991. 10

Leitgeb, H. Neural Network Models of Conditionals. In Introduction to Formal Philosophy, 147-176. Springer, 2018.
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Example: Building a Neural Network
a W

Louis Agassiz Fuertes. Penguins (1895). Watercolor and pencil on paper. Image from Cornell University Lab of
Ornithology Art Collection.
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Soundness and Completeness

Leitgeb, H. Neural Network Models of Conditionals. In Introduction to Formal Philosophy, 147-176. Springer, 2018. 19



Soundness and Completeness

Soundness
I'-AimpliesT = A

e Not: An explanation of a
particular neural network’s
behavior

e Butinstead: Sound rules give
high-level properties for all
neural networks (of a certain
architecture)

Leitgeb, H. Neural Network Models of Conditionals. In Introduction to Formal Philosophy, 147-176. Springer, 2018. 20



Soundness and Completeness

Soundness Completeness
I'-AimpliesT = A ' =AimpliesT A
e Not: An explanation of a e Equivalently: Can we build a
particular neural network’s neural network satisfying the
behavior set [' of constraints?
e But instead: Sound rules give penguir — bird
high-level properties for all — ety =il
neural networks (of a certain $

architecture) |
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Prop([penguin])
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Leitgeb, H. Neural Network Models of Conditionals. In Introduction to Formal Philosophy, 147-176. Springer, 2018.
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Iterated Hebbian Learning

Neurons that fire together wire together

0
0
I:[SII //i‘ | S'l()

Repeat this update until a fixed point!
i.e. until the weights are “maximally high”

We call the resulting net Hebb*(N, [S])

D. Hebb. The Organization of Behavior. Psychology Press, 1949.

22
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Example: Learning Wrecks the Model!

[bird]
[flies]

[penguin]
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Louis Agassiz Fuertes. Atlantic Puffin (1932). Watercolor and pencil on paper. From Portraits of New England Birds.

Commonwealth Of Massachusetts, 1932. Edited by Sabrina Schultz Kisby.
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Logic & Formal Semantics

Syntax. We consider the language:

A Bep|-A|ANB|KA|TA
We define the duals (K), (T ) as usual. We can express
A= B as TA— B (“the typical Ais B").

Semantics. We map each formula to a state:

[pl=V(p) [-Al=[AI" [AAB]=[A]lN[B]

[KA] = {n| nis graph-reachable from A}
[TA] = Prop([A])

Definition. N,wF A iff w e [A]

[[AIBIn = [BlHebb(n.[A1)

Can we completely characterize [A]'s effect on the net?

Kisby, C., Blanco, S., and Moss, L. The Logic of Hebbian Learning. In The International FLAIRS Conference Proceedings,

volume 35, 2022.
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Main Results

Theorem. The following axioms are sound:

wlp < p for propositions p

o] & el

(v Ap) < el Alplp

o] Ke < Koy

0] T < T([¢] A (T VK(Te Vv T[p]v)))

Theorem. Assuming model building for the base language:
For all consistent ' C L there is a net A/ such that N |=T.

Theorem. Assuming completeness for the base language:
[0] is completely axiomatized by the reduction axioms from
before.
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Future Work

Stabilized Learning Policies. Hebb* increases the weights until
they're maximally large. But stabilized hebbian learning (e.g. Oja’s
rule) increases weights towards a convergent point.

Single-step Update. We often want guarantees for what the neural
network learns at each step. This is the heart of Al Alignment.

What about Backpropagation? This is our major long-term goal!

33



Check Out Our P

IIJ Reduction Axioms for Iterated Hebbian Learning

Neural Network Sei

Definition. The neural networks N we consider are
weighted, fully-connected, feed-forward nets with binary
activation functions. The net's states (activation pat-
terns) are just given by sets of nodes.

Definition. The forward-propagation Prop(S) gives
the set of nodes that are eventually activated by S.

Key Idea: Neural networks are not merely black boxes!
Prop(S) contains information about conditional beliefs:

Let's say A= B holds iff Prop([A]) 2 [B]; in other
words, the net classifies A as B. (Leitgeb 2018) shows
that we can build a neural network (with states) satis-
fying a set of conditional constraints I'.

Example. Let I = {penguins — bird, bird = flies,
—(penguins = flies)}. Here's how we might build N:

[bird]

Ipenguin] (f :
(@]

Prop([penguin])
Syntax. We consider the language:
ABep|-A| ANB|KA|TA

We define the duals (K), (T) as usual. We can express
A=> B as TA— B ("the typical Ais B").

Semantics. We map each formula to a state:
[P=V(p) [-AI=[A [AABI=[AIN[B]

[KA] = {n| nis graph-reachable from A}
[TA] = Prop([A])

Definition. N, wEAiff we [A]

Caleb Schultz Kisby, Sadl Blanco, and Lawrence Moss
Indiana University

Iterated Hebbian Learning
These semantics don't account for learning! e.g., Con-
sider iterated Hebbian learning, which says

Neurons that fire together wire together;
Repeat until we reach a fixed point.

’O" e

.
puffin] (jé

Definition. Hebb*(N, [S]) gives the resulting
net obtained by increasing the weights of N within
Prop([S]) until they are “maximally high."

Prop([puffin])

Example. Say the neural network we built before
repeatedly observes puffins (shown in the above pic-
ture). Puffins share enough features with penguins that
the net eventually believes that penguins fly

[bird]

[penguin] d

Prop([penguin])

[flies]

Learning wrecks the model! How can we track the pre-
cise way in which the network model changes?

We can model this logically via dynamic formulas [A]B
(read “after learning A, B holds"). Formally,

[IA1B]n

Can we completely characterize [A]'s effect on the net?

[BlHebb:(v.141)

Main Results

Theorem. The following axioms are sound:
[Alp “p
[A-B  — -AB
[A(BAC) < [AIBA[AIC
[AKB < K[AB

[ATB o T(ABA(TAV

K(TAVT[AB)

Theorem. Assuming model building for the base lan-

guage, for all consistent ' C L there is a net N such that

NET

Theorem. Assuming completeness for the base lan-

guage, [A] is completely axiomatized by the reduction

axioms above.

Future Work

e Can we extend this to more sophisticated learning
policies? Consider: convergence, supervised learning,
single-step update

e Could we do this analysis for backpropagation?

e How can we use this in practice to constrain nets
throughout their training? (Al Alignment)

e What is the relationship between neural network
learning and plausibility upgrade?

Thanks and Contact

This work was funded in part by the US Department of Defense
[Contract No. W52P1J2093009]. Thanks as well to the anony-
mous reviewers for their helpful feedback and suggestions!

Contact: Caleb Schultz Kisby
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ais-climber.github.io
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!Department of Computer Science, Indiana University
2Department of Mathematics, Indiana University
Bloomington, IN 47408, USA
{cckisby, sblancor, Imoss} @indiana.edu

Abstract

This paper is a contribution to neural network semantics, a
foundational framework for neuro-symbolic Al The key in-
sight of this theory is that logical operators can be mapped to
operators on neural network states. In this paper, we do this
for a neural network learning operator. We map a dynamic
operator [¢] to iterated Hebbian learning, a simple learning
policy that updates a neural network by repeatedly applying
Hebb’s learning rule until the net reaches a fixed-point. Our
main result is that we can “translate away” [¢]-formulas via
reduction axioms. This means that completeness for the logic
of iterated Hebbian learning follows from completeness of the
base logic. These reduction axioms also provide (1) a human-
interpretable description of iterated Hebbian learning as a kind
of plausibility upgrade, and (2) an approach to building neural
networks with guarantees on what they can learn.

1 Introduction

The two dominant paradigms of Al, connectionist neural
networks and symbolic systems, have long seemed irrecon-
cilable. Symbolic systems are well-suited for giving explicit
inferences in a human-interpretable language, but are brit-
tle and fail to adapt to new situations. On the other hand,
neural networks are flexible and excel at learning from un-
structured data, but are considered black-boxes due to how
difficult it is to interpret their reasoning. In response to this
dichotomy, the field of neuro-symbolic AI has emerged —

Contact:

The central questions this theory aims to answer are:
Soundness. What axioms are sound for neural network oper-

ators? Can neural operators be mapped to classical ones in

a sound way? Note that checking soundness is equivalent

to formally verifying properties of nets.

Completeness. What are the complete axioms for neural
network operators? This is equivalent to model building:
Can we build a neural network that obeys a set of logi-
cal constraints I'? Can we build a neural network from a
classical model?

We refer the reader to the landmark survey (Odense and

d’ Avila Garcez 2022), which shows that this framework en-

compasses a wide class of neuro-symbolic systems. We will

discuss other work that we consider part of the core theory in
the next section.

The standard example is the forward propagation operator
Prop over a net V. Active neurons in a state .S successively
activate new neurons until eventually the state of the net
stabilizes — Prop(S) returns the state at the fixed point. A
classic result from (Leitgeb 2001) is this: Say conditionals
@ = 1) are interpreted as

N ¢ = 4 iff Prop([¢]) 2 [¢]
i.e., ¢ is activated by input ; or “the net classifies ¢ as 1”.
Then, in a binary feed-forward net, Prop is completely ax-
iomatized by the loop-cumulative conditional laws of (Kraus,
Lehmann, and Magidor 1990). The result is robust, and can

Caleb Schultz Kisby

cckisby@iu.edu

https://ais-climber.github.io/
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